TY - JOUR
T1 - Chylomicron- and VLDL-derived lipids enter the heart through different pathways
T2 - In vivo evidence for receptor- and non-receptor-mediated fatty acid uptake
AU - Bharadwaj, Kalyani G.
AU - Hiyama, Yaeko
AU - Hu, Yunying
AU - Huggins, Lesley Ann
AU - Ramakrishnan, Rajasekhar
AU - Abumrad, Nada A.
AU - Shulman, Gerald I.
AU - Blaner, William S.
AU - Goldberg, Ira J.
PY - 2010/12/3
Y1 - 2010/12/3
N2 - Lipids circulate in the blood in association with plasma lipoproteins and enter the tissues either after hydrolysis or as non-hydrolyzable lipid esters. We studied cardiac lipids, lipoprotein lipid uptake, and gene expression in heart-specific lipoprotein lipase (LpL) knock-out (hLpL0), CD36 knock-out (Cd36-/-), and double knock-out (hLpL0/Cd36-/--DKO) mice. Loss of either LpL or CD36 led to a significant reduction in heart total fatty acyl-CoA (control, 99.5 ± 3.8; hLpL0, 36.2 ± 3.5; Cd36 -/-, 57.7 ± 5.5 nmol/g, p < 0.05) and an additive effect was observed in the DKO (20.2 ± 1.4 nmol/g, p < 0.05). Myocardial VLDL-triglyceride (TG) uptake was reduced in the hLpL0 (31 ± 6%) and Cd36-/- (47 ± 4%) mice with an additive reduction in the DKO (64 ± 5%) compared with control. However, LpL but not CD36 deficiency decreased VLDL-cholesteryl ester uptake. Endogenously labeled mouse chylomicrons were produced by tamoxifen treatment of β-actin-MerCreMer/LpL flox/flox mice. Induced loss of LpL increased TG levels >10-fold and reduced HDL by >50%. After injection of these labeled chylomicrons in the different mice, chylomicron TG uptake was reduced by ∼70% and retinyl ester by ∼50% in hLpL0 hearts. Loss of CD36 did not alter either chylomicron TG or retinyl ester uptake. LpL loss did not affect uptake of remnant lipoproteins from ApoE knock-out mice. Our data are consistent with two pathways for fatty acid uptake; a CD36 process for VLDL-derived fatty acid and a non-CD36 process for chylomicron-derived fatty acid uptake. In addition, our data show that lipolysis is involved in uptake of core lipids from TG-rich lipoproteins.
AB - Lipids circulate in the blood in association with plasma lipoproteins and enter the tissues either after hydrolysis or as non-hydrolyzable lipid esters. We studied cardiac lipids, lipoprotein lipid uptake, and gene expression in heart-specific lipoprotein lipase (LpL) knock-out (hLpL0), CD36 knock-out (Cd36-/-), and double knock-out (hLpL0/Cd36-/--DKO) mice. Loss of either LpL or CD36 led to a significant reduction in heart total fatty acyl-CoA (control, 99.5 ± 3.8; hLpL0, 36.2 ± 3.5; Cd36 -/-, 57.7 ± 5.5 nmol/g, p < 0.05) and an additive effect was observed in the DKO (20.2 ± 1.4 nmol/g, p < 0.05). Myocardial VLDL-triglyceride (TG) uptake was reduced in the hLpL0 (31 ± 6%) and Cd36-/- (47 ± 4%) mice with an additive reduction in the DKO (64 ± 5%) compared with control. However, LpL but not CD36 deficiency decreased VLDL-cholesteryl ester uptake. Endogenously labeled mouse chylomicrons were produced by tamoxifen treatment of β-actin-MerCreMer/LpL flox/flox mice. Induced loss of LpL increased TG levels >10-fold and reduced HDL by >50%. After injection of these labeled chylomicrons in the different mice, chylomicron TG uptake was reduced by ∼70% and retinyl ester by ∼50% in hLpL0 hearts. Loss of CD36 did not alter either chylomicron TG or retinyl ester uptake. LpL loss did not affect uptake of remnant lipoproteins from ApoE knock-out mice. Our data are consistent with two pathways for fatty acid uptake; a CD36 process for VLDL-derived fatty acid and a non-CD36 process for chylomicron-derived fatty acid uptake. In addition, our data show that lipolysis is involved in uptake of core lipids from TG-rich lipoproteins.
UR - http://www.scopus.com/inward/record.url?scp=78649658552&partnerID=8YFLogxK
U2 - 10.1074/jbc.M110.174458
DO - 10.1074/jbc.M110.174458
M3 - Article
C2 - 20852327
AN - SCOPUS:78649658552
SN - 0021-9258
VL - 285
SP - 37976
EP - 37986
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 49
ER -