Chronic, low-dose rotenone reproduces lewy neurites found in early stages of Parkinson's disease, reduces mitochondrial movement and slowly kills differentiated SH-SY5Y neural cells

M. Kathleen Borland, Patricia A. Trimmer, Jeremy D. Rubinstein, Paula M. Keeney, K. P. Mohanakumar, Lei Liu, James P. Bennett

Research output: Contribution to journalArticlepeer-review

100 Scopus citations

Abstract

Background. Parkinson's disease, the most common adult neurodegenerative movement disorder, demonstrates a brain-wide pathology that begins pre-clinically with alpha-synuclein aggregates ("Lewy neurites") in processes of gut enteric and vagal motor neurons. Rostral progression into substantia nigra with death of dopamine neurons produces the motor impairment phenotype that yields a clinical diagnosis. The vast majority of Parkinson's disease occurs sporadically, and current models of sporadic Parkinson's disease (sPD) can utilize directly infused or systemic neurotoxins. Results. We developed a differentiation protocol for human SH-SY5Y neuroblastoma that yielded non-dividing dopaminergic neural cells with long processes that we then exposed to 50 nM rotenone, a complex I inhibitor used in Parkinson's disease models. After 21 days of rotenone, ∼60% of cells died. Their processes retracted and accumulated ASYN-(+) and UB-(+) aggregates that blocked organelle transport. Mitochondrial movement velocities were reduced by 8 days of rotenone and continued to decline over time. No cytoplasmic inclusions resembling Lewy bodies were observed. Gene microarray analyses showed that the majority of genes were under-expressed. qPCR analyses of 11 mtDNA-encoded and 10 nDNA-encoded mitochondrial electron transport chain RNAs' relative expressions revealed small increases in mtDNA-encoded genes and lesser regulation of nDNA-encoded ETC genes. Conclusion. Subacute rotenone treatment of differentiated SH-SY5Y neuroblastoma cells causes process retraction and partial death over several weeks, slowed mitochondrial movement in processes and appears to reproduce the Lewy neuritic changes of early Parkinson's disease pathology but does not cause Lewy body inclusions. The overall pattern of transcriptional regulation is gene under-expression with minimal regulation of ETC genes in spite of rotenone's being a complex I toxin. This rotenone-SH-SY5Y model in a differentiated human neural cell mimics changes of early Parkinson's disease and may be useful for screening therapeutics for neuroprotection in that disease stage.

Original languageEnglish
Article number21
JournalMolecular neurodegeneration
Volume3
Issue number1
DOIs
StatePublished - 2008

Fingerprint

Dive into the research topics of 'Chronic, low-dose rotenone reproduces lewy neurites found in early stages of Parkinson's disease, reduces mitochondrial movement and slowly kills differentiated SH-SY5Y neural cells'. Together they form a unique fingerprint.

Cite this