TY - JOUR
T1 - Chronic activation of PPARα is detrimental to cardiac recovery after ischemia
AU - Sambandam, Nandakumar
AU - Morabito, Dominique
AU - Wagg, Cory
AU - Finck, Brian N.
AU - Kelly, Daniel P.
AU - Lopaschuk, Gary D.
PY - 2006/1
Y1 - 2006/1
N2 - High fatty acid oxidation (FAO) rates contribute to ischemia-reperfusion injury of the myocardium. Because peroxisome proliferator-activated receptor (PPAR)α regulates transcription of several FAO enzymes in the heart, we examined the response of mice with cardiac-restricted overexpression of PPARα (MHC-PPARα) or whole body PPARα deletion including the heart (PPARα-/-) to myocardial ischemia-reperfusion injury. Isolated working hearts from MHC-PPARα and nontransgenic (NTG) littermates were subjected to no-flow global ischemia followed by reperfusion. MHC-PPARα hearts had significantly higher FAO rates during aerobic and postischemic reperfusion (aerobic 1,479 ± 171 vs. 699 ± 117, reperfusion 1,062 ± 214 vs. 601 ± 70 nmol·g dry wt -1·min-1; P < 0.05) and significantly lower glucose oxidation rates compared with NTG hearts (aerobic 225 ± 36 vs. 1,563 ± 165, reperfusion 402 ± 54 vs. 1,758 ± 165 nmol·g dry wt-1·min-1; P < 0.05). In hearts from PPARα-/- mice, FAO was significantly lower during aerobic and reperfusion (aerobic 235 ± 36 vs. 442 ± 75, reperfusion 205 ± 25 vs. 346 ± 38 nmol·g dry wt -1·min-1; P < 0.05) whereas glucose oxidation was significantly higher compared with wild-type (WT) hearts (aerobic 2,491 ± 631 vs. 901 ± 119, reperfusion 2,690 ± 562 vs. 1,315 ± 172 nmol·g dry wt-1·min-1; P < 0.05). Increased FAO rates in MHC-PPARα hearts were associated with a markedly lower recovery of cardiac power (45 ± 9% vs. 71 ± 6% of preischemic levels in NTG hearts; P < 0.05). In contrast, the percent recovery of cardiac power of PPARα-/- hearts was not significantly different from that of WT hearts (80 ± 8% vs. 75 ± 9%). This study demonstrates that chronic activation of PPARα is detrimental to the cardiac recovery during reperfusion after ischemia.
AB - High fatty acid oxidation (FAO) rates contribute to ischemia-reperfusion injury of the myocardium. Because peroxisome proliferator-activated receptor (PPAR)α regulates transcription of several FAO enzymes in the heart, we examined the response of mice with cardiac-restricted overexpression of PPARα (MHC-PPARα) or whole body PPARα deletion including the heart (PPARα-/-) to myocardial ischemia-reperfusion injury. Isolated working hearts from MHC-PPARα and nontransgenic (NTG) littermates were subjected to no-flow global ischemia followed by reperfusion. MHC-PPARα hearts had significantly higher FAO rates during aerobic and postischemic reperfusion (aerobic 1,479 ± 171 vs. 699 ± 117, reperfusion 1,062 ± 214 vs. 601 ± 70 nmol·g dry wt -1·min-1; P < 0.05) and significantly lower glucose oxidation rates compared with NTG hearts (aerobic 225 ± 36 vs. 1,563 ± 165, reperfusion 402 ± 54 vs. 1,758 ± 165 nmol·g dry wt-1·min-1; P < 0.05). In hearts from PPARα-/- mice, FAO was significantly lower during aerobic and reperfusion (aerobic 235 ± 36 vs. 442 ± 75, reperfusion 205 ± 25 vs. 346 ± 38 nmol·g dry wt -1·min-1; P < 0.05) whereas glucose oxidation was significantly higher compared with wild-type (WT) hearts (aerobic 2,491 ± 631 vs. 901 ± 119, reperfusion 2,690 ± 562 vs. 1,315 ± 172 nmol·g dry wt-1·min-1; P < 0.05). Increased FAO rates in MHC-PPARα hearts were associated with a markedly lower recovery of cardiac power (45 ± 9% vs. 71 ± 6% of preischemic levels in NTG hearts; P < 0.05). In contrast, the percent recovery of cardiac power of PPARα-/- hearts was not significantly different from that of WT hearts (80 ± 8% vs. 75 ± 9%). This study demonstrates that chronic activation of PPARα is detrimental to the cardiac recovery during reperfusion after ischemia.
KW - Acetyl-CoA carboxylase
KW - Fatty acid oxidation
KW - Myocardial ischemia
KW - Peroxisome proliferator-activated receptor α
KW - Reperfusion
UR - http://www.scopus.com/inward/record.url?scp=33644662725&partnerID=8YFLogxK
U2 - 10.1152/ajpheart.00285.2005
DO - 10.1152/ajpheart.00285.2005
M3 - Article
C2 - 16155108
AN - SCOPUS:33644662725
SN - 0363-6135
VL - 290
SP - H87-H95
JO - American Journal of Physiology - Heart and Circulatory Physiology
JF - American Journal of Physiology - Heart and Circulatory Physiology
IS - 1
ER -