TY - JOUR
T1 - Chromosome 3p loss–orchestrated VHL, HIF, and epigenetic deregulation in clear cell renal cell carcinoma
AU - Hsieh, James J.
AU - Le, Valerie H.
AU - Oyama, Toshinao
AU - Ricketts, Christopher J.
AU - Ho, Thai Huu
AU - Cheng, Emily H.
N1 - Publisher Copyright:
© 2018 by American Society of Clinical Oncology
PY - 2018/12/20
Y1 - 2018/12/20
N2 - Clear cell renal cell carcinoma (ccRCC) is the most common renal cell carcinoma subtype, and metastatic ccRCC is associated with 5-year survival rates of 10% to 20%. Genetically, ccRCC originates from sequential losses of multiple tumor suppressor genes. Remarkably, chromosome 3p loss occurs in more than 90% of sporadic ccRCCs. This results in concurrent one-copy loss of four tumor suppressor genes that are also mutated individually at high frequency in ccRCC (ie, VHL, 80%; PBRM1, 29% to 46%; BAP1, 6% to 19%; and SETD2, 8% to 30%). Pathogenically, 3p loss probably represents the first genetic event that occurs in sporadic ccRCC and the second genetic event in VHL-mutated hereditary ccRCC. VHL constitutes the substrate recognition module of the VCB-Cul2 E3 ligase that degrades HIF1/2a, whereas PBRM1, BAP1, and SETD2 are epigenetic modulators that regulate gene transcription. Because 3p loss and VHL inactivation are nearly universal truncal events in ccRCC, the resulting HIF1/2 signaling overdrive and accompanied tumor hyper-vascularization probably underlie the therapeutic benefits observed with vascular endothelial growth factor receptor inhibitors, including sorafenib, sunitinib, pazopanib, axitinib, bevacizumab, cabo-zantinib, and lenvatinib. Furthermore, recent marked advances in ccRCC genomics, transcriptomics, proteomics, metabolomics, molecular mechanisms, mouse models, prognostic and predictive biomarkers, and clinical trials have rendered invaluable translational insights concerning precision kidney cancer therapeutics. With an armamentarium encompassing 13 drugs that exploit seven unique therapeutic mechanisms (ie, cytokines, vascular endothelial growth factor receptor, mTORC1, cMET/AXL, fibroblast growth factor receptor, programmed cell death-1 and programmed death-ligand 1, and cytotoxic T-cell lymphocyte associated-4) to treat metastatic renal cell carcinoma, one of the imminent clinical questions concerning care of patients with metastatic ccRCC is how a personalized treatment strategy, through rationally combining and sequencing different therapeutic modalities, can be formulated to offer the best clinical outcome for individual patients. Here, we attempt to integrate recent discoveries of immediate translational impacts and discuss future translational challenges and opportunities.
AB - Clear cell renal cell carcinoma (ccRCC) is the most common renal cell carcinoma subtype, and metastatic ccRCC is associated with 5-year survival rates of 10% to 20%. Genetically, ccRCC originates from sequential losses of multiple tumor suppressor genes. Remarkably, chromosome 3p loss occurs in more than 90% of sporadic ccRCCs. This results in concurrent one-copy loss of four tumor suppressor genes that are also mutated individually at high frequency in ccRCC (ie, VHL, 80%; PBRM1, 29% to 46%; BAP1, 6% to 19%; and SETD2, 8% to 30%). Pathogenically, 3p loss probably represents the first genetic event that occurs in sporadic ccRCC and the second genetic event in VHL-mutated hereditary ccRCC. VHL constitutes the substrate recognition module of the VCB-Cul2 E3 ligase that degrades HIF1/2a, whereas PBRM1, BAP1, and SETD2 are epigenetic modulators that regulate gene transcription. Because 3p loss and VHL inactivation are nearly universal truncal events in ccRCC, the resulting HIF1/2 signaling overdrive and accompanied tumor hyper-vascularization probably underlie the therapeutic benefits observed with vascular endothelial growth factor receptor inhibitors, including sorafenib, sunitinib, pazopanib, axitinib, bevacizumab, cabo-zantinib, and lenvatinib. Furthermore, recent marked advances in ccRCC genomics, transcriptomics, proteomics, metabolomics, molecular mechanisms, mouse models, prognostic and predictive biomarkers, and clinical trials have rendered invaluable translational insights concerning precision kidney cancer therapeutics. With an armamentarium encompassing 13 drugs that exploit seven unique therapeutic mechanisms (ie, cytokines, vascular endothelial growth factor receptor, mTORC1, cMET/AXL, fibroblast growth factor receptor, programmed cell death-1 and programmed death-ligand 1, and cytotoxic T-cell lymphocyte associated-4) to treat metastatic renal cell carcinoma, one of the imminent clinical questions concerning care of patients with metastatic ccRCC is how a personalized treatment strategy, through rationally combining and sequencing different therapeutic modalities, can be formulated to offer the best clinical outcome for individual patients. Here, we attempt to integrate recent discoveries of immediate translational impacts and discuss future translational challenges and opportunities.
UR - http://www.scopus.com/inward/record.url?scp=85058568679&partnerID=8YFLogxK
U2 - 10.1200/JCO.2018.79.2549
DO - 10.1200/JCO.2018.79.2549
M3 - Article
C2 - 30372397
AN - SCOPUS:85058568679
SN - 0732-183X
VL - 36
SP - 3533
EP - 3539
JO - Journal of Clinical Oncology
JF - Journal of Clinical Oncology
IS - 36
ER -