Chloroquine sensitizes GNAQ/11-mutated melanoma to MEK1/2 inhibition

Amanda Truong, Jae Hyuk Yoo, Michael T. Scherzer, John Michael S. Sanchez, Kali J. Dale, Conan G. Kinsey, Jackson R. Richards, Donghan Shin, Phaedra C. Ghazi, Michael D. Onken, Kendall J. Blumer, Shannon J. Odelberg, Martin McMahon

Research output: Contribution to journalArticlepeer-review

36 Scopus citations

Abstract

Purpose: Mutational activation of GNAQ or GNA11 (GNAQ/11), detected in >90% of uveal melanomas, leads to constitutive activation of oncogenic pathways, including MAPK and YAP. To date, chemo- or pathway-targeted therapies, either alone or in combination, have proven ineffective in the treatment of patients with metastatic uveal melanoma. Experimental Design: We tested the efficacy of chloroquine or hydroxychloroquine, in combination with MAPK pathway inhibition in GNAQ/11-mutated cells in vitro and in vivo and identified mechanisms of MEK1/2 inhibitor plus chloroquine-induced cytotoxicity. Results: Inhibition of GNAQ/11-mediated activation of MAPK signaling resulted in the induction of autophagy. Combined inhibition of Ga and autophagy or lysosome function resulted in enhanced cell death. Moreover, the combination of MEK1/2 inhibition, using trametinib, with the lysosome inhibitor, chloroquine, also increased cytotoxicity. Treatment of mice bearing GNAQ/11-driven melanomas with trametinib plus hydroxychloroquine resulted in inhibition of tumor growth and significantly prolonged survival. Interestingly, lysosomal- and autophagy-specific inhibition with bafilomycin A1 was not sufficient to promote cytotoxicity in combination with trametinib. However, the addition of YAP inhibition with trametinib plus bafilomycin A1 resulted in cell death at comparable levels to trametinib plus chloroquine (T/CQ) treatment. Furthermore, T/CQ-treated cells displayed decreased YAP nuclear localization and decreased YAP transcriptional activity. Expression of a constitutively active YAP5SA mutant conferred resistance to T/CQ-induced cell death. Conclusions: These results suggest that YAP, MEK1/2, and lysosome function are necessary and critical targets for the therapy of GNAQ/11-driven melanoma, and identify trametinib plus hydroxychloroquine as a potential treatment strategy for metastatic uveal melanoma.

Original languageEnglish
Pages (from-to)6374-6386
Number of pages13
JournalClinical Cancer Research
Volume26
Issue number23
DOIs
StatePublished - Dec 2020

Fingerprint

Dive into the research topics of 'Chloroquine sensitizes GNAQ/11-mutated melanoma to MEK1/2 inhibition'. Together they form a unique fingerprint.

Cite this