TY - JOUR
T1 - Chemogenetic inhibition of amygdala excitatory neurons impairs rhEPO-enhanced contextual fear memory after TBI
AU - Celorrio, Marta
AU - Friess, Stuart H.
N1 - Funding Information:
This work was supported by the National Institutes of Health (R01NS097721). Fluorescent imaging was performed on a Zeiss Axio Imager Z2 Fluorescence Microscope with ApoTome 2 optical sectioning grid imager through the use of Washington University Center for Cellular Imaging (WUCCI) supported by Washington University School of Medicine, The Children's Discovery Institute of Washington University and St. Louis Children's Hospital (CDI-CORE-2015-505 and CDI-CORE-2019-813) and the Foundation for Barnes-Jewish Hospital (3770 and 4642).
Funding Information:
This work was supported by the National Institutes of Health (R01NS097721). Fluorescent imaging was performed on a Zeiss Axio Imager Z2 Fluorescence Microscope with ApoTome 2 optical sectioning grid imager through the use of Washington University Center for Cellular Imaging (WUCCI) supported by Washington University School of Medicine, The Children’s Discovery Institute of Washington University and St. Louis Children’s Hospital (CDI-CORE-2015-505 and CDI-CORE-2019-813) and the Foundation for Barnes-Jewish Hospital (3770 and 4642).
Publisher Copyright:
© 2023 Elsevier B.V.
PY - 2023/5/1
Y1 - 2023/5/1
N2 - Erythropoietin (EPO) is a hypoxia-responsive cytokine that induces neuroprotective effect in hypoxic-ischaemic, traumatic, excitotoxic and inflammatory injuries. Recently, utilizing a clinically relevant murine model of TBI and delayed hypoxemia, we have found that ongoing recombinant human EPO (rhEPO) administration influenced neurogenesis, neuroprotection, synaptic density and, behavioral outcomes early after TBI, and the impact on long-lasting outcomes 6 months after injury. We also demonstrated that the 1-month behavioral improvement was associated with mitogen-activated protein kinase (MAPK)/cAMP response element-binding protein (CREB) signaling activation and increased of excitatory synaptic density in the amygdala. However, we did not uncover which type of cells were involved in fear memory response enhancement after rhEPO treatment in the setting of TBI with delayed hypoxemia. In this report, using chemogenetic tools in our controlled cortical impact (CCI) model, we were able to inactivate excitatory neurons and eliminate rhEPO-induced fear memory recall enhancement. In summary, these data demonstrate that rhEPO treatment initiated after TBI enhances contextual fear memory in the injured brain via activation of excitatory neurons in the amygdala.
AB - Erythropoietin (EPO) is a hypoxia-responsive cytokine that induces neuroprotective effect in hypoxic-ischaemic, traumatic, excitotoxic and inflammatory injuries. Recently, utilizing a clinically relevant murine model of TBI and delayed hypoxemia, we have found that ongoing recombinant human EPO (rhEPO) administration influenced neurogenesis, neuroprotection, synaptic density and, behavioral outcomes early after TBI, and the impact on long-lasting outcomes 6 months after injury. We also demonstrated that the 1-month behavioral improvement was associated with mitogen-activated protein kinase (MAPK)/cAMP response element-binding protein (CREB) signaling activation and increased of excitatory synaptic density in the amygdala. However, we did not uncover which type of cells were involved in fear memory response enhancement after rhEPO treatment in the setting of TBI with delayed hypoxemia. In this report, using chemogenetic tools in our controlled cortical impact (CCI) model, we were able to inactivate excitatory neurons and eliminate rhEPO-induced fear memory recall enhancement. In summary, these data demonstrate that rhEPO treatment initiated after TBI enhances contextual fear memory in the injured brain via activation of excitatory neurons in the amygdala.
KW - Designer receptors exclusively activated by designer drugs (DREADDs)
KW - Erythropoietin
KW - Fear memory
KW - Hypoxemia
KW - Traumatic brain injury
UR - http://www.scopus.com/inward/record.url?scp=85151432445&partnerID=8YFLogxK
U2 - 10.1016/j.neulet.2023.137216
DO - 10.1016/j.neulet.2023.137216
M3 - Article
C2 - 36997018
AN - SCOPUS:85151432445
SN - 0304-3940
VL - 804
JO - Neuroscience Letters
JF - Neuroscience Letters
M1 - 137216
ER -