TY - JOUR
T1 - Charge carrier field emission determines the number of charges on native state proteins in electrospray ionization
AU - Hogan, Christopher J.
AU - Carroll, James A.
AU - Rohrs, Henry W.
AU - Biswas, Pratim
AU - Gross, Michael L.
N1 - Funding Information:
This paper is based upon work supported by the Solar Energy Research Institute for India and the U.S. (SERIIUS) funded jointly by the U.S. Department of Energy subcontract DE AC36-08G028308 (Office of Science, Office of Basic Energy Sciences, and Energy Efficiency and Renewable Energy, Solar Energy Technology Program, with support from the Office of International Affairs) and the Government of India subcontract IUSSTF/JCERDC-SERIIUS/2012 dated 22nd Nov. 2012. Electron microscopy was performed at the Nano Research Facility (NRF) at Washington University in St. Louis, a member of the National Nanotechnology Infrastructure Network (NNIN), supported by the National Science Foundation under Grant No. ECS-0335765. The work of MMY and SQL was supported by the National Natural Science Funds of China (Nos. 51390491 and 51428602), and by the National Key Basic Research and Development Program (2013CB228506).
PY - 2008/6/4
Y1 - 2008/6/4
N2 - Although multiple charging in electrospray ionization (ESI) is essential to protein mass spectrometry, the underlying mechanism of multiple charging has not been explicated. Here, we present a new theory to describe ESI of native-state proteins and predict the number of excess charges on proteins in ESI. The theory proposes that proteins are ionized as charged residues in ESI, as they retain residual excess charges after solvent evaporation and do not desorb from charged ESI droplets. However, their charge state is not determined by the Rayleigh limit of a droplet of similar size to the protein; rather, their final charge state is determined by the electric field-induced emission of small charged solute ions and clusters from protein-containing ESI droplets. This theory predicts that the number of charges on a protein in ESI should be directly proportional to the square of the gas-phase protein diameter and to E*, the critical electric field strength at which ion emission from droplets occurs. This critical field strength is determined by the properties of the excess charge carriers (i.e., the solute) in droplets. Charge-state measurements of native-state proteins with molecular masses in the 5-76 kDa range in ammonium acetate and triethylammonium bicarbonate are in excellent agreement with theoretical predictions and strongly support the mechanism of protein ESI proposed here.
AB - Although multiple charging in electrospray ionization (ESI) is essential to protein mass spectrometry, the underlying mechanism of multiple charging has not been explicated. Here, we present a new theory to describe ESI of native-state proteins and predict the number of excess charges on proteins in ESI. The theory proposes that proteins are ionized as charged residues in ESI, as they retain residual excess charges after solvent evaporation and do not desorb from charged ESI droplets. However, their charge state is not determined by the Rayleigh limit of a droplet of similar size to the protein; rather, their final charge state is determined by the electric field-induced emission of small charged solute ions and clusters from protein-containing ESI droplets. This theory predicts that the number of charges on a protein in ESI should be directly proportional to the square of the gas-phase protein diameter and to E*, the critical electric field strength at which ion emission from droplets occurs. This critical field strength is determined by the properties of the excess charge carriers (i.e., the solute) in droplets. Charge-state measurements of native-state proteins with molecular masses in the 5-76 kDa range in ammonium acetate and triethylammonium bicarbonate are in excellent agreement with theoretical predictions and strongly support the mechanism of protein ESI proposed here.
UR - http://www.scopus.com/inward/record.url?scp=44449130990&partnerID=8YFLogxK
U2 - 10.1021/ja801280c
DO - 10.1021/ja801280c
M3 - Article
C2 - 18461930
AN - SCOPUS:44449130990
SN - 0002-7863
VL - 130
SP - 6926
EP - 6927
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 22
ER -