TY - JOUR
T1 - Characterization of the signal for rapid internalization of the bovine mannose 6-phosphate/insulin-like growth factor-II receptor
AU - Jadot, M.
AU - Canfield, W. M.
AU - Gregory, W.
AU - Kornfeld, S.
PY - 1992/6/5
Y1 - 1992/6/5
N2 - The signal for rapid internalization of the mannose 6-phosphate/insulin-like growth factor II receptor has been localized to the sequence Tyr-Lys-Tyr-Ser-Lys-Val in positions 24-29 of its 163-residue cytoplasmic tail. Most of the activity of this signal is mediated by the carboxyl 4 amino acids, especially Tyr26 and Val29 (Canfield, W. M., Johnson, K. F., Ye, R. D., Gregory, W. and Kornfeld, S. (1991) J. Biol. Chem. 266, 5682-5688). In this study, we have tested the effect of a series of mutations on the internalization rate of a mutant receptor that contains a 29-amino acid cytoplasmic tail terminating with the 4-amino acid internalization sequence Tyr-Ser-Lys-Val. Replacement of Tyr28 with Phe or Trp gave rise to mutant receptors that were internalized at 10% the wild-type rate, while receptors with Ala, Leu, Ile, Val, or Asn at this position were totally inactive. Val29 could be replaced by other large hydrophobic residues (Phe, Leu, He, or Met) with no loss of activity, but the presence of Ala, Gly, Arg, Gln, or Tyr in this position inactivated the signal. Ser27 could be effectively replaced by many different amino acids, but not by Pro or Gly. However, Gly27 could be tolerated if the residues at positions 28 and 29 were also changed. A change in the 2-residue spacing between Tyr28 and Val29 destroyed the signal. These data show that the essential elements of this signal are an aromatic residue, especially a Tyr in the first position, separated from a large hydrophobic residue in the last position by 2 amino acids. The residues in positions 2 and 3 of the signal may have a modulating effect on its activity. The Tyr-Ser-Lys-Val signal could be moved to a more proximal region of the cytoplasmic tail with only a modest loss of activity. In addition, the signal could be effectively replaced by the putative 4-residue signals of seven other receptors and membrane proteins known to undergo rapid endocytosis, including the Tyr-Thr-Arg-Phe sequence of the transferrin receptor, a Type II membrane protein. These results are compatible with the 4-residue signals of this type being interchangeable, even among Type I and Type II membrane proteins.
AB - The signal for rapid internalization of the mannose 6-phosphate/insulin-like growth factor II receptor has been localized to the sequence Tyr-Lys-Tyr-Ser-Lys-Val in positions 24-29 of its 163-residue cytoplasmic tail. Most of the activity of this signal is mediated by the carboxyl 4 amino acids, especially Tyr26 and Val29 (Canfield, W. M., Johnson, K. F., Ye, R. D., Gregory, W. and Kornfeld, S. (1991) J. Biol. Chem. 266, 5682-5688). In this study, we have tested the effect of a series of mutations on the internalization rate of a mutant receptor that contains a 29-amino acid cytoplasmic tail terminating with the 4-amino acid internalization sequence Tyr-Ser-Lys-Val. Replacement of Tyr28 with Phe or Trp gave rise to mutant receptors that were internalized at 10% the wild-type rate, while receptors with Ala, Leu, Ile, Val, or Asn at this position were totally inactive. Val29 could be replaced by other large hydrophobic residues (Phe, Leu, He, or Met) with no loss of activity, but the presence of Ala, Gly, Arg, Gln, or Tyr in this position inactivated the signal. Ser27 could be effectively replaced by many different amino acids, but not by Pro or Gly. However, Gly27 could be tolerated if the residues at positions 28 and 29 were also changed. A change in the 2-residue spacing between Tyr28 and Val29 destroyed the signal. These data show that the essential elements of this signal are an aromatic residue, especially a Tyr in the first position, separated from a large hydrophobic residue in the last position by 2 amino acids. The residues in positions 2 and 3 of the signal may have a modulating effect on its activity. The Tyr-Ser-Lys-Val signal could be moved to a more proximal region of the cytoplasmic tail with only a modest loss of activity. In addition, the signal could be effectively replaced by the putative 4-residue signals of seven other receptors and membrane proteins known to undergo rapid endocytosis, including the Tyr-Thr-Arg-Phe sequence of the transferrin receptor, a Type II membrane protein. These results are compatible with the 4-residue signals of this type being interchangeable, even among Type I and Type II membrane proteins.
UR - http://www.scopus.com/inward/record.url?scp=0026755982&partnerID=8YFLogxK
M3 - Article
C2 - 1317852
AN - SCOPUS:0026755982
SN - 0021-9258
VL - 267
SP - 11069
EP - 11077
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 16
ER -