TY - JOUR
T1 - Characterization of the MPS I-H knock-in mouse reveals increased femoral biomechanical integrity with compromised material strength and altered bone geometry
AU - Oestreich, Arin K.
AU - Garcia, Mekka R.
AU - Yao, Xiaomei
AU - Pfeiffer, Ferris M.
AU - Nobakhti, Sabah
AU - Shefelbine, Sandra J.
AU - Wang, Yong
AU - Brodeur, Amanda C.
AU - Phillips, Charlotte L.
N1 - Funding Information:
The authors would like to sincerely thank Dr. Mark Ellersieck for his help with statistics, as well as Caleb Holder, Jacqueline Hampton, Jay Guyll, and Jevon Huang for their help with genotyping and data processing. This work was supported by funding from the Leda J. Sears Trust , and Missouri State Faculty Research Grant . The funding agencies did not contribute to the study design, analysis, or interpretation of the data.
Publisher Copyright:
© 2015 The Authors. Published by Elsevier Inc.
PY - 2015/12/9
Y1 - 2015/12/9
N2 - Mucopolysaccharidosis type I (MPS I), is an autosomal recessive lysosomal storage disorder caused by a deficiency in the α-L-iduronidase enzyme, resulting in decreased enzymatic activity and accumulation of glycosaminoglycans. The disorder phenotypically manifests with increased urine glycosaminoglycan excretion, facial dysmorphology, neuropathology, cardiac manifestations, and bone deformities. While the development of new treatment strategies have shown promise in attenuating many symptoms associated with the disorder, the bone phenotype remains unresponsive. The aim of this study was to investigate and further characterize the skeletal manifestations of the Idua-W392X knock-in mouse model, which carries a nonsense mutation corresponding to the IDUA-W402X mutation found in Hurler syndrome (MPS I-H) patients. μCT analysis of the microarchitecture demonstrated increased cortical thickness, trabecular number, and trabecular connectivity along with decreased trabecular separation in the tibiae of female homozygous Idua-W392X knock-in (IDUA-/-) mice, and increased cortical thickness in male IDUA-/- tibiae. Cortical density, as determined by μCT, and bone mineral density distribution, as determined by quantitative backscattered microscopy, were equivalent in IDUA-/- and wildtype (Wt) bone. However, tibial porosity was increased in IDUA-/- cortical bone. Raman spectroscopy results indicated that tibiae from female IDUA-/- had decreased phosphate to matrix ratios and increased carbonate to phosphate ratios compared to Wt female tibiae, whereas these ratios remained equivalent in male IDUA-/- and Wt tibiae. Femora demonstrated altered geometry and upon torsional loading to failure analysis, female IDUA-/- mouse femora exhibited increased torsional ultimate strength, with a decrease in material strength relative to Wt littermates. Taken together, these findings suggest that the IDUA-/- mutation results in increased bone torsional strength by altering the overall bone geometry and the microarchitecture which may be a compensatory response to increased porosity, reduced bone tensile strength and altered physiochemical composition.
AB - Mucopolysaccharidosis type I (MPS I), is an autosomal recessive lysosomal storage disorder caused by a deficiency in the α-L-iduronidase enzyme, resulting in decreased enzymatic activity and accumulation of glycosaminoglycans. The disorder phenotypically manifests with increased urine glycosaminoglycan excretion, facial dysmorphology, neuropathology, cardiac manifestations, and bone deformities. While the development of new treatment strategies have shown promise in attenuating many symptoms associated with the disorder, the bone phenotype remains unresponsive. The aim of this study was to investigate and further characterize the skeletal manifestations of the Idua-W392X knock-in mouse model, which carries a nonsense mutation corresponding to the IDUA-W402X mutation found in Hurler syndrome (MPS I-H) patients. μCT analysis of the microarchitecture demonstrated increased cortical thickness, trabecular number, and trabecular connectivity along with decreased trabecular separation in the tibiae of female homozygous Idua-W392X knock-in (IDUA-/-) mice, and increased cortical thickness in male IDUA-/- tibiae. Cortical density, as determined by μCT, and bone mineral density distribution, as determined by quantitative backscattered microscopy, were equivalent in IDUA-/- and wildtype (Wt) bone. However, tibial porosity was increased in IDUA-/- cortical bone. Raman spectroscopy results indicated that tibiae from female IDUA-/- had decreased phosphate to matrix ratios and increased carbonate to phosphate ratios compared to Wt female tibiae, whereas these ratios remained equivalent in male IDUA-/- and Wt tibiae. Femora demonstrated altered geometry and upon torsional loading to failure analysis, female IDUA-/- mouse femora exhibited increased torsional ultimate strength, with a decrease in material strength relative to Wt littermates. Taken together, these findings suggest that the IDUA-/- mutation results in increased bone torsional strength by altering the overall bone geometry and the microarchitecture which may be a compensatory response to increased porosity, reduced bone tensile strength and altered physiochemical composition.
KW - Abbreviations MPS I mucopolysaccharidosis type I
KW - BMD bone mineral density
KW - BMDD bone mineral density distribution
KW - BV/TV bone volume/total volume
KW - FWHM full width at half maximum
KW - G shear modulus of elasticity
KW - GAGs glycosaminoglycans
KW - IDUA α-L-iduronidase
KW - Ks stiffness
KW - SMI structure model index
KW - Su tensile strength
KW - T<inf>max</inf> torsional ultimate strength
KW - U energy to failure
KW - μCT microcomputed tomography
UR - http://www.scopus.com/inward/record.url?scp=84940998423&partnerID=8YFLogxK
U2 - 10.1016/j.ymgmr.2015.08.004
DO - 10.1016/j.ymgmr.2015.08.004
M3 - Article
AN - SCOPUS:84940998423
VL - 5
SP - 3
EP - 11
JO - Molecular Genetics and Metabolism Reports
JF - Molecular Genetics and Metabolism Reports
SN - 2214-4269
ER -