TY - JOUR
T1 - Characterization of resistance genes to rice blast fungus Magnaporthe oryzae in a “Green Revolution” rice variety
AU - Liu, Yan
AU - Qi, Xinshuai
AU - Young, Nelson D.
AU - Olsen, Kenneth M.
AU - Caicedo, Ana L.
AU - Jia, Yulin
N1 - Funding Information:
We thank Marcos André Nohatto, Michael Lin, and Tracy Bianco for their excellent technical support. This project was funded in part by the National Science Foundation Plant Genome Research Program (NSF award IOS-1032023). The US Department of Agriculture is an equal opportunity provider and employer.
Publisher Copyright:
© 2015, Springer Science+Business Media Dordrecht (outside the USA).
PY - 2015/1
Y1 - 2015/1
N2 - The indica rice variety Dee Geo Woo Gen (DGWG) was the source of the semidwarf gene (SD1) which played an important role in the Green Revolution. In the present study, resistance (R) genes to the US race (isolate) IB54 of Magnaporthe oryzae, causal agent of rice blast disease, was investigated. Two recombinant inbred line mapping populations, consisting of 175 and 224 individuals derived from crosses of DGWG with the straw hull weedy rice type PI653435 (AR-2001-1135; S population) and the black hull type PI653419 (MS-1996-9; B population), respectively, were used for mapping blast R genes and quantitative trait loci (QTLs). Two high-resolution linkage maps with 6,513 (S population) and 14,382 (B population) single nucleotide polymorphic markers derived from genotyping-by-sequencing data were used to map R genes. Two partial resistance QTLs, qBR1.1 and qBR6.1, and one major resistance QTL, qBR11.1, were identified in the B population. One partial resistance QTL, qBR6.1, and one major resistance QTL, qBR11.1, were confirmed with the S population. The total phenotypic variation of three resistance QTLs was 51 %, ranging from 1.12 to 47.62 %, in the B population. All three resistance QTLs were localized to relatively small genomic regions. The major resistance QTL, qBR11.1, was mapped to a 129-kb region on chromosome 11 near nine known blast R genes. Within this 129-kb region, three genes encoding putative nucleotide-binding site and leucine-rich repeat (LRR) disease resistance proteins and three genes encoding WRKY transcription factors WRKY61, WRKY63, and WRKY41 were identified as candidate genes of qBR11.1 and tentatively designated as Pi66(t). Identification of blast R genes in DGWG should help continued deployment of useful genes for improving crop productivity and resistance to rice blast disease.
AB - The indica rice variety Dee Geo Woo Gen (DGWG) was the source of the semidwarf gene (SD1) which played an important role in the Green Revolution. In the present study, resistance (R) genes to the US race (isolate) IB54 of Magnaporthe oryzae, causal agent of rice blast disease, was investigated. Two recombinant inbred line mapping populations, consisting of 175 and 224 individuals derived from crosses of DGWG with the straw hull weedy rice type PI653435 (AR-2001-1135; S population) and the black hull type PI653419 (MS-1996-9; B population), respectively, were used for mapping blast R genes and quantitative trait loci (QTLs). Two high-resolution linkage maps with 6,513 (S population) and 14,382 (B population) single nucleotide polymorphic markers derived from genotyping-by-sequencing data were used to map R genes. Two partial resistance QTLs, qBR1.1 and qBR6.1, and one major resistance QTL, qBR11.1, were identified in the B population. One partial resistance QTL, qBR6.1, and one major resistance QTL, qBR11.1, were confirmed with the S population. The total phenotypic variation of three resistance QTLs was 51 %, ranging from 1.12 to 47.62 %, in the B population. All three resistance QTLs were localized to relatively small genomic regions. The major resistance QTL, qBR11.1, was mapped to a 129-kb region on chromosome 11 near nine known blast R genes. Within this 129-kb region, three genes encoding putative nucleotide-binding site and leucine-rich repeat (LRR) disease resistance proteins and three genes encoding WRKY transcription factors WRKY61, WRKY63, and WRKY41 were identified as candidate genes of qBR11.1 and tentatively designated as Pi66(t). Identification of blast R genes in DGWG should help continued deployment of useful genes for improving crop productivity and resistance to rice blast disease.
KW - DGWG
KW - GBS
KW - Green Revolution
KW - Pi66(t)
KW - R gene
KW - Rice blast resistance
UR - http://www.scopus.com/inward/record.url?scp=84921750738&partnerID=8YFLogxK
U2 - 10.1007/s11032-015-0256-y
DO - 10.1007/s11032-015-0256-y
M3 - Article
AN - SCOPUS:84921750738
SN - 1380-3743
VL - 35
JO - Molecular Breeding
JF - Molecular Breeding
IS - 1
ER -