TY - JOUR
T1 - Characterization of a murine type IIB procollagen-specific antibody
AU - Patra, Debabrata
AU - DeLassus, Elizabeth
AU - McAlinden, Audrey
AU - Sandell, Linda J.
N1 - Funding Information:
The authors declare no potential conflicts of interest with respect to research, authorship, and/or publication of this article. The authors would like to thank Crystal Idleburg of the In Situ Molecular Analysis subdivision of the Washington University's Musculoskeletal Research Center for her assistance with histological analysis and Soumya Ravindran for her help with breeding the Col2a1 + ex2 mice to provide tissue for our analyses. This work was funded by National Institutes of Health grants RO1 AR050847 and RO1 AR045550 to L. J. Sandell and R21 AR053513 to Audrey McAlinden, and by a P30AR057235 to the Musculoskeletal Research Center at Washington University.
PY - 2014/2
Y1 - 2014/2
N2 - Type II collagen is the major collagenous component of the cartilage extracellular matrix; formation of a covalently cross-linked type II collagen network provides cartilage with important tensile properties. The Col2a1 gene is encoded by 54 exons, of which exon 2 is subject to alternative splicing, resulting in different isoforms named IIA, IIB, IIC and IID. The two major procollagen protein isoforms are type IIA and type IIB procollagen. Type IIA procollagen mRNA contains exon 2 and is generated predominantly by chondroprogenitor cells and other non-cartilaginous tissues. Differentiated chondrocytes generate type IIB procollagen, devoid of exon 2. Although type IIA procollagen is produced in certain non-collagenous tissues during development, this developmentally-regulated alternative splicing switch to type IIB procollagen is restricted to cartilage cells. Though a much studied and characterized molecule, the importance of the various type II collagen protein isoforms in cartilage development and homeostasis is still not completely understood. Effective antibodies against specific epitopes of these isoforms can be useful tools to decipher function. However, most type II collagen antibodies to date recognize either all isoforms or the IIA procollagen isoform. To specifically identify the murine type IIB procollagen, we have generated a rabbit antibody (termed IIBN) directed to a peptide sequence that spans the murine exon 1-3 peptide junction. Characterization of the affinity-purified antibody by western blotting of collagens extracted from wild type murine cartilage or cartilage from Col2a1+ex2 knock-in mice (which generates predominantly the type IIA procollagen isoform) demonstrated that the IIBN antibody is specific to the type IIB procollagen isoform. IIBN antibody was also able to detect the native type IIB procollagen in the hypertrophic chondrocytes of the wild type growth plate, but not in those of the Col2a1+ex2 homozygous knock-in mice, by both immunofluorescence and immunohistochemical studies. Thus the IIBN antibody will permit an in-depth characterization of the distribution of IIB procollagen isoform in mouse skeletal tissues. In addition, this antibody will be an important reagent for characterizing mutant type II collagen phenotypes and for monitoring type II procollagen processing and trafficking.
AB - Type II collagen is the major collagenous component of the cartilage extracellular matrix; formation of a covalently cross-linked type II collagen network provides cartilage with important tensile properties. The Col2a1 gene is encoded by 54 exons, of which exon 2 is subject to alternative splicing, resulting in different isoforms named IIA, IIB, IIC and IID. The two major procollagen protein isoforms are type IIA and type IIB procollagen. Type IIA procollagen mRNA contains exon 2 and is generated predominantly by chondroprogenitor cells and other non-cartilaginous tissues. Differentiated chondrocytes generate type IIB procollagen, devoid of exon 2. Although type IIA procollagen is produced in certain non-collagenous tissues during development, this developmentally-regulated alternative splicing switch to type IIB procollagen is restricted to cartilage cells. Though a much studied and characterized molecule, the importance of the various type II collagen protein isoforms in cartilage development and homeostasis is still not completely understood. Effective antibodies against specific epitopes of these isoforms can be useful tools to decipher function. However, most type II collagen antibodies to date recognize either all isoforms or the IIA procollagen isoform. To specifically identify the murine type IIB procollagen, we have generated a rabbit antibody (termed IIBN) directed to a peptide sequence that spans the murine exon 1-3 peptide junction. Characterization of the affinity-purified antibody by western blotting of collagens extracted from wild type murine cartilage or cartilage from Col2a1+ex2 knock-in mice (which generates predominantly the type IIA procollagen isoform) demonstrated that the IIBN antibody is specific to the type IIB procollagen isoform. IIBN antibody was also able to detect the native type IIB procollagen in the hypertrophic chondrocytes of the wild type growth plate, but not in those of the Col2a1+ex2 homozygous knock-in mice, by both immunofluorescence and immunohistochemical studies. Thus the IIBN antibody will permit an in-depth characterization of the distribution of IIB procollagen isoform in mouse skeletal tissues. In addition, this antibody will be an important reagent for characterizing mutant type II collagen phenotypes and for monitoring type II procollagen processing and trafficking.
KW - Antibody
KW - Cartilage
KW - Chondrocyte
KW - Type II collagen
KW - Type IIA procollagen
KW - Type IIB procollagen
UR - http://www.scopus.com/inward/record.url?scp=84900310295&partnerID=8YFLogxK
U2 - 10.1016/j.matbio.2013.10.014
DO - 10.1016/j.matbio.2013.10.014
M3 - Article
C2 - 24211541
AN - SCOPUS:84900310295
SN - 0945-053X
VL - 34
SP - 154
EP - 160
JO - Matrix Biology
JF - Matrix Biology
ER -