Characterization of a commercial multileaf collimator used for intensity modulated radiation therapy

Low Daniel A, Jason W. Sohn, Eric E. Klein, Jerry Markman, Sasa Mutic, James F. Dempsey

Research output: Contribution to journalArticlepeer-review

62 Scopus citations

Abstract

The characteristics of a commercial multileaf collimator (MLC) to deliver static and dynamic multileaf collimation (SMLC and DMLC, respectively) were investigated to determine their influence on intensity modulated radiation therapy (IMRT) treatment planning and quality assurance. The influence of MLC leaf positioning accuracy on sequentially abutted SMLC fields was measured by creating abutting fields with selected gaps and overlaps. These data were also used to measure static leaf positioning precision. The characteristics of high leaf-velocity DMLC delivery were measured with constant velocity leaf sequences starting with an open field and closing a single leaf bank. A range of 1-72 monitor units (MU) was used providing a range of leaf velocities. The field abutment measurements yielded dose errors (as a percentage of the open field max dose) of 16.7 ±0.7% mm-1 and 12.8±0.7% mm-1 for 6 MV and 18 MV photon beams, respectively. The MLC leaf positioning precision was 0.080±0.018 mm (single standard deviation) highlighting the excellent delivery hardware tolerances for the tested beam delivery geometry. The high leaf-velocity DMLC measurements showed delivery artifacts when the leaf sequence and selected monitor units caused the linear accelerator to move the leaves at their maximum velocity while modulating the accelerator dose rate to deliver the desired leaf and MU sequence (termed leaf-velocity limited delivery). According to the vendor, a unique feature to their linear accelerator and MLC is that the dose rate is reduced to provide the correct cm MU-1 leaf velocity when the delivery is leaf-velocity limited. However, it was found that the system delivered roughly 1 MU per pulse when the delivery was leaf-velocity limited causing dose profiles to exhibit discrete steps rather than a smooth dose gradient. The root mean square difference between the steps and desired linear gradient was less than 3% when more than 4 MU were used. The average dose per MU was greater and less than desired for closing and opening leaf patterns, respectively, when the delivery was leaf-velocity limited. The results indicated that the dose delivery artifacts should be minor for most clinical cases, but limit the assumption of dose linearity when significantly reducing the delivered dose for dosimeter characterization studies or QA measurements.

Original languageEnglish
Pages (from-to)752-756
Number of pages5
JournalMedical physics
Volume28
Issue number5
DOIs
StatePublished - May 2001

Keywords

  • Dynamic multileaf collimation
  • Intensity modulated radiation therapy
  • Quality assurance
  • Static multilieaf collimation

Fingerprint

Dive into the research topics of 'Characterization of a commercial multileaf collimator used for intensity modulated radiation therapy'. Together they form a unique fingerprint.

Cite this