TY - JOUR
T1 - Cerebral glucose transport and metabolism in preterm human infants
AU - Powers, William J.
AU - Rosenbaum, Joan L.
AU - Dence, Carmen S.
AU - Markham, Joanne
AU - Videen, Tom O.
PY - 1998/6
Y1 - 1998/6
N2 - Few data regarding early developmental changes in cerebral (blood-to- brain) glucose transport (CTX(glc)) and CMR(glc) are available for humans. We measured CBF, CTX(glc), and CMR(glc) with positron emission tomography at 4 to 7 days of life in six preterm human infants whose estimated gestational age was 25 to 34 weeks. The Michaelis-Menten constants K(t) and T(max) were estimated from CTX(glc) and the calculated cerebral capillary plasma glucose concentration. Mean CMR(glc) was 8.8 μmol 100 g-1 min-1. The CMR(glc) did not correlate with plasma glucose concentration (r = .315, P = .543), whereas CTX(glc) showed a significant correlation with plasma glucose concentration (r = .836, P = .038). Estimation of the Michaelis-Menten constants from the best fit to the measured data produced values of K(t) = 6.0 μmol mL-1 and T(max) = 32.6 μmol 100 g-1 min-1. These values for K(t) in the developing human brain are similar to those that have been reported for the mature brain of adolescent and adult humans and adult nonhuman primates, indicating the affinity of the glucose transport protein for D-glucose is similar. However, T(max) is approximately one third to one half of the comparable values for mature brain, indicating a reduced number of available luminal transporters.
AB - Few data regarding early developmental changes in cerebral (blood-to- brain) glucose transport (CTX(glc)) and CMR(glc) are available for humans. We measured CBF, CTX(glc), and CMR(glc) with positron emission tomography at 4 to 7 days of life in six preterm human infants whose estimated gestational age was 25 to 34 weeks. The Michaelis-Menten constants K(t) and T(max) were estimated from CTX(glc) and the calculated cerebral capillary plasma glucose concentration. Mean CMR(glc) was 8.8 μmol 100 g-1 min-1. The CMR(glc) did not correlate with plasma glucose concentration (r = .315, P = .543), whereas CTX(glc) showed a significant correlation with plasma glucose concentration (r = .836, P = .038). Estimation of the Michaelis-Menten constants from the best fit to the measured data produced values of K(t) = 6.0 μmol mL-1 and T(max) = 32.6 μmol 100 g-1 min-1. These values for K(t) in the developing human brain are similar to those that have been reported for the mature brain of adolescent and adult humans and adult nonhuman primates, indicating the affinity of the glucose transport protein for D-glucose is similar. However, T(max) is approximately one third to one half of the comparable values for mature brain, indicating a reduced number of available luminal transporters.
KW - Blood-brain barrier
KW - Cerebral glucose metabolism
KW - Cerebral glucose transport
KW - Infant
KW - Neonate
UR - http://www.scopus.com/inward/record.url?scp=0031799410&partnerID=8YFLogxK
U2 - 10.1097/00004647-199806000-00005
DO - 10.1097/00004647-199806000-00005
M3 - Article
C2 - 9626187
AN - SCOPUS:0031799410
SN - 0271-678X
VL - 18
SP - 632
EP - 638
JO - Journal of Cerebral Blood Flow and Metabolism
JF - Journal of Cerebral Blood Flow and Metabolism
IS - 6
ER -