TY - JOUR
T1 - Cellular remodeling in heart failure disrupts KATP channel-dependent stress tolerance
AU - Hodgson, Denice M.
AU - Zingman, Leonid V.
AU - Kane, Garvan C.
AU - Perez-Terzic, Carmen
AU - Bienengraeber, Martin
AU - Ozcan, Cevher
AU - Gumina, Richard J.
AU - Pucar, Darko
AU - O'Coclain, Fergus
AU - Mann, Douglas L.
AU - Alekseev, Alexey E.
AU - Terzic, Andre
PY - 2003/4/15
Y1 - 2003/4/15
N2 - ATP-sensitive potassium (KATP) channels are required for maintenance of homeostasis during the metabolically demanding adaptive response to stress. However, in disease, the effect of cellular remodeling on KATP channel behavior and associated tolerance to metabolic insult is unknown. Here, transgenic expression of tumor necrosis factor α induced heart failure with typical cardiac structural and energetic alterations. In this paradigm of disease remodeling, KATP channels responded aberrantly to metabolic signals despite intact intrinsic channel properties, implicating defects proximal to the channel. Indeed, cardiomyocytes from failing hearts exhibited mitochondrial and creatine kinase deficits, and thus a reduced potential for metabolic signal generation and transmission. Consequently, KATP channels failed to properly translate cellular distress under metabolic challenge into a protective membrane response. Failing hearts were excessively vulnerable to metabolic insult, demonstrating cardiomyocyte calcium loading and myofibrillar contraction banding, with tolerance improved by KATP channel openers. Thus, disease-induced KATP channel metabolic dysregulation is a contributor to the pathobiology of heart failure, illustrating a mechanism for acquired channelopathy.
AB - ATP-sensitive potassium (KATP) channels are required for maintenance of homeostasis during the metabolically demanding adaptive response to stress. However, in disease, the effect of cellular remodeling on KATP channel behavior and associated tolerance to metabolic insult is unknown. Here, transgenic expression of tumor necrosis factor α induced heart failure with typical cardiac structural and energetic alterations. In this paradigm of disease remodeling, KATP channels responded aberrantly to metabolic signals despite intact intrinsic channel properties, implicating defects proximal to the channel. Indeed, cardiomyocytes from failing hearts exhibited mitochondrial and creatine kinase deficits, and thus a reduced potential for metabolic signal generation and transmission. Consequently, KATP channels failed to properly translate cellular distress under metabolic challenge into a protective membrane response. Failing hearts were excessively vulnerable to metabolic insult, demonstrating cardiomyocyte calcium loading and myofibrillar contraction banding, with tolerance improved by KATP channel openers. Thus, disease-induced KATP channel metabolic dysregulation is a contributor to the pathobiology of heart failure, illustrating a mechanism for acquired channelopathy.
KW - ATP-sensitive potassium channel
KW - Energy metabolism
KW - Heart failure
KW - Potassium channel openers
KW - TNFα
UR - http://www.scopus.com/inward/record.url?scp=0037446942&partnerID=8YFLogxK
U2 - 10.1093/emboj/cdg192
DO - 10.1093/emboj/cdg192
M3 - Article
C2 - 12682006
AN - SCOPUS:0037446942
SN - 0261-4189
VL - 22
SP - 1732
EP - 1742
JO - EMBO Journal
JF - EMBO Journal
IS - 8
ER -