TY - CHAP
T1 - Cellular and molecular mechanisms of convergence and extension in zebrafish
AU - Williams, Margot L.K.
AU - Solnica-Krezel, Lilianna
N1 - Publisher Copyright:
© 2020 Elsevier Inc.
PY - 2020
Y1 - 2020
N2 - Gastrulation is the period of development when the three germ layers, mesoderm, endoderm and ectoderm, are not only formed, but also shaped into a rudimentary body plan. An elongated anteroposterior (AP) axis is a key feature of all vertebrate body plans, and it forms during gastrulation through the highly conserved morphogenetic mechanism of convergence & extension (C&E). As the name suggests, this process requires that cells within each germ layer converge toward the dorsal midline to narrow the tissue in the mediolateral (ML) dimension and concomitantly extend it in the AP dimension. In a number of vertebrate species, C&E is driven primarily by mediolateral intercalation behavior (MIB), during which cells elongate, align, and extend protrusions in the ML direction and interdigitate between their neighbors. MIB is only one of many complex cellular mechanisms that contributes to C&E in zebrafish embryos, however, where a combination of individual cell migration, collective migration, random walk, radial intercalation, epiboly movements, and MIB all act together to shape the nascent germ layers. Each of these diverse cell movements is driven by a distinct suite of dynamic cellular properties/activities, such as actin-rich protrusions, myosin contractility, and blebbing. Here, we discuss the spatiotemporal patterns of cellular behaviors underlying C&E gastrulation movements within each germ layer of zebrafish embryos. These behaviors must be coordinated with the embryonic axes, and we highlight the roles of Planar Cell Polarity (PCP) in orienting and BMP signaling in patterning C&E cell behaviors with respect to the AP and dorsoventral axes. Finally, we address the role of GPCR signaling, extracellular matrix, and mechanical signals in coordination of C&E movements between adjacent germ layers.
AB - Gastrulation is the period of development when the three germ layers, mesoderm, endoderm and ectoderm, are not only formed, but also shaped into a rudimentary body plan. An elongated anteroposterior (AP) axis is a key feature of all vertebrate body plans, and it forms during gastrulation through the highly conserved morphogenetic mechanism of convergence & extension (C&E). As the name suggests, this process requires that cells within each germ layer converge toward the dorsal midline to narrow the tissue in the mediolateral (ML) dimension and concomitantly extend it in the AP dimension. In a number of vertebrate species, C&E is driven primarily by mediolateral intercalation behavior (MIB), during which cells elongate, align, and extend protrusions in the ML direction and interdigitate between their neighbors. MIB is only one of many complex cellular mechanisms that contributes to C&E in zebrafish embryos, however, where a combination of individual cell migration, collective migration, random walk, radial intercalation, epiboly movements, and MIB all act together to shape the nascent germ layers. Each of these diverse cell movements is driven by a distinct suite of dynamic cellular properties/activities, such as actin-rich protrusions, myosin contractility, and blebbing. Here, we discuss the spatiotemporal patterns of cellular behaviors underlying C&E gastrulation movements within each germ layer of zebrafish embryos. These behaviors must be coordinated with the embryonic axes, and we highlight the roles of Planar Cell Polarity (PCP) in orienting and BMP signaling in patterning C&E cell behaviors with respect to the AP and dorsoventral axes. Finally, we address the role of GPCR signaling, extracellular matrix, and mechanical signals in coordination of C&E movements between adjacent germ layers.
KW - Axis extension
KW - Cell intercalation
KW - Cell migration
KW - GPCR
KW - Gastrulation
KW - Germ layers
KW - Morphogenesis
KW - Nodal
KW - PCP
KW - Planar cell polarity
UR - http://www.scopus.com/inward/record.url?scp=85071580952&partnerID=8YFLogxK
U2 - 10.1016/bs.ctdb.2019.08.001
DO - 10.1016/bs.ctdb.2019.08.001
M3 - Chapter
C2 - 31959296
AN - SCOPUS:85071580952
SN - 9780128127988
T3 - Current Topics in Developmental Biology
SP - 377
EP - 407
BT - Gastrulation
A2 - Solnica-Krezel, Lilianna
PB - Academic Press Inc.
ER -