TY - GEN
T1 - Cell segmentation using front vector flow guided active contours
AU - Li, Fuhai
AU - Zhou, Xiaobo
AU - Zhao, Hong
AU - Wong, Stephen T.C.
PY - 2009
Y1 - 2009
N2 - Phase-contrast microscopy is a common approach for studying the dynamics of cell behaviors, such as cell migration. Cell segmentation is the basis of quantitative analysis of the immense cellular images. However, the complicated cell morphological appearance in phase-contrast microscopy images challenges the existing segmentation methods. This paper proposes a new cell segmentation method for cancer cell migration studies using phase-contrast images. Instead of segmenting cells directly based on commonly used low-level features, e.g. intensity and gradient, we first identify the leading protrusions, a high level feature, of cancer cells. Based on the identified cell leading protrusions, we introduce a front vector flow guided active contour, which guides the initial cell boundaries to the real boundaries. The experimental validation on a set of breast cancer cell images shows that the proposed method demonstrates fast, stable, and accurate segmentation for breast cancer cells with wide range of sizes and shapes.
AB - Phase-contrast microscopy is a common approach for studying the dynamics of cell behaviors, such as cell migration. Cell segmentation is the basis of quantitative analysis of the immense cellular images. However, the complicated cell morphological appearance in phase-contrast microscopy images challenges the existing segmentation methods. This paper proposes a new cell segmentation method for cancer cell migration studies using phase-contrast images. Instead of segmenting cells directly based on commonly used low-level features, e.g. intensity and gradient, we first identify the leading protrusions, a high level feature, of cancer cells. Based on the identified cell leading protrusions, we introduce a front vector flow guided active contour, which guides the initial cell boundaries to the real boundaries. The experimental validation on a set of breast cancer cell images shows that the proposed method demonstrates fast, stable, and accurate segmentation for breast cancer cells with wide range of sizes and shapes.
UR - http://www.scopus.com/inward/record.url?scp=79959551031&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-04271-3_74
DO - 10.1007/978-3-642-04271-3_74
M3 - Conference contribution
C2 - 20426162
AN - SCOPUS:79959551031
SN - 3642042708
SN - 9783642042706
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 609
EP - 616
BT - Medical Image Computing and Computer-Assisted Intervention - MICCAI2009 - 12th International Conference, Proceedings
T2 - 12th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2009
Y2 - 20 September 2009 through 24 September 2009
ER -