Abstract
Foxp3 is the master transcription factor for T regulatory (Treg) cell differentiation and function. This study aimed to test the therapeutic potential of cell penetrating recombinant Foxp3 protein in arthritis. Recombinant Foxp3 protein was fused to a cell penetrating polyarginine (Foxp3-11R) tag to facilitate intracellular transduction. In vitro Foxp3-11R treated CD4+ T cells showed a 50% increase in suppressive function compared with control protein treated cells. Severity of arthritis in Foxp3-11R treated mice was significantly reduced compared with those treated with a control protein. CD4+ T cells of lymph nodes and spleen from Foxp3-11R treated mice showed increased levels of Foxp3 expression compared with those of a control protein treated. These results demonstrated that Foxp3-11R can enhance T cell suppressive function and ameliorate experimental arthritis and suggest that cell penetrating recombinant Foxp3 is a potentially useful agent in therapy of arthritis.
Original language | English |
---|---|
Pages (from-to) | 263-267 |
Number of pages | 5 |
Journal | Biochemical and Biophysical Research Communications |
Volume | 434 |
Issue number | 2 |
DOIs | |
State | Published - May 3 2013 |
Keywords
- Arthritis
- Foxp3
- T regulatory cells