Abstract

PURPOSE Cell-free DNA (cfDNA) and circulating tumor cell (CTC)-based liquid biopsies have emerged as potential tools to predict responses to androgen receptor (AR)-directed therapy in metastatic prostate cancer. However, because of complex mechanisms and incomplete understanding of genomic events involved in metastatic prostate cancer resistance, current assays (eg, CTC AR-V7) demonstrate low sensitivity and remain underutilized. The recent discovery of AR enhancer amplification in > 80% of patients with metastatic disease and its association with disease resistance presents an opportunity to improve on current assays. We hypothesized that tracking AR/enhancer genomic alterations in plasma cfDNA would detect resistance with high sensitivity and specificity. PATIENTS AND METHODS We developed a targeted sequencing and analysis method as part of a new assay called Enhancer and Neighboring Loci of Androgen Receptor Sequencing (EnhanceAR-Seq). We applied EnhanceARSeq to plasma collected from 40 patients with metastatic prostate cancer treated with AR-directed therapy to monitor AR/enhancer genomic alterations and correlated these events with therapy resistance, progression-free survival (PFS), and overall survival (OS). RESULTS EnhanceAR-Seq identified genomic alterations in the AR/enhancer locus in 45% of cases, including a 40% rate of AR enhancer amplification. Patients with AR/enhancer alterations had significantly worse PFS and OS than those without (6-month PFS, 30% v 71%; P = .0002; 6-month OS, 59% v 100%; P = .0015). AR/enhancer alterations in plasma cfDNA detected 18 of 23 resistant cases (78%) and outperformed the CTC ARV7 assay, which was also run on a subset of patients. CONCLUSION cfDNA-based AR locus alterations, including of the enhancer, are strongly associated with resistance to AR-directed therapy and significantly worse survival. cfDNA analysis using EnhanceAR-Seq may enable more precise risk stratification and personalized therapeutic approaches for metastatic prostate cancer.

Original languageEnglish
Pages (from-to)680-713
Number of pages34
JournalJCO Precision Oncology
Volume4
DOIs
StatePublished - 2020

Fingerprint

Dive into the research topics of 'Cell-free DNA alterations in the AR enhancer and locus predict resistance to AR-directed therapy in patients with metastatic prostate cancer'. Together they form a unique fingerprint.

Cite this