TY - JOUR
T1 - (Ca2+ + Mg2+)-ATPase activity in plasma membrane of circulating mononuclear cells
T2 - Lack of a direct effect of vitamin D
AU - Morimoto, S.
AU - Birge, S. J.
AU - Shen, V.
AU - Avioli, L. V.
PY - 1985
Y1 - 1985
N2 - The in vivo effect of vitamin D on (Ca2+ + Mg2+)-ATPase activity was examined in a plasma membrane fraction of rat circulating mononuclear cells (MPM). Although there was no significant difference in the ATPase activities in red blood cell ghosts, (Ca2+ + Mg2+)-ATPase activity in MPM was significantly higher (p < 0.05) in long-term vitamin D3-replete rats (100 IU/day for 6 months) than that in vitamin D-deplete rats (for 6 months). In rats maintained on vitamin D-deficient diets for 5-7 weeks, in vivo administration of either vitamin D3 2,000 IU orally, 5 days prior to killing or 1,25-dihydroxyvitamin D3, 2.4 nmol, intraperitoneally, 24 h prior to killing failed to show any significant effect on (Ca2+ + Mg2+)-ATPase activity in MPM. (Ca2+ + Mg2+)-ATPase activity in MPM from rats maintained on vitamin D-deficient diet with high calcium content (1.8%) was significantly higher (p < 0.05) than that from rats maintained on vitamin D-deficient diet with low calcium content (0.3%). Moreover, in vitro addition of vitamin D3 metabolites did not show any effect on (Ca2+ + Mg2+)-ATPase activity in MPM. These data suggest that decreased (Ca2+ + Mg2+)-ATPase activity in MPM from long-term vitamin D-deplete rats resulted from an adaptation to low extracellular calcium rather than vitamin D depletion.
AB - The in vivo effect of vitamin D on (Ca2+ + Mg2+)-ATPase activity was examined in a plasma membrane fraction of rat circulating mononuclear cells (MPM). Although there was no significant difference in the ATPase activities in red blood cell ghosts, (Ca2+ + Mg2+)-ATPase activity in MPM was significantly higher (p < 0.05) in long-term vitamin D3-replete rats (100 IU/day for 6 months) than that in vitamin D-deplete rats (for 6 months). In rats maintained on vitamin D-deficient diets for 5-7 weeks, in vivo administration of either vitamin D3 2,000 IU orally, 5 days prior to killing or 1,25-dihydroxyvitamin D3, 2.4 nmol, intraperitoneally, 24 h prior to killing failed to show any significant effect on (Ca2+ + Mg2+)-ATPase activity in MPM. (Ca2+ + Mg2+)-ATPase activity in MPM from rats maintained on vitamin D-deficient diet with high calcium content (1.8%) was significantly higher (p < 0.05) than that from rats maintained on vitamin D-deficient diet with low calcium content (0.3%). Moreover, in vitro addition of vitamin D3 metabolites did not show any effect on (Ca2+ + Mg2+)-ATPase activity in MPM. These data suggest that decreased (Ca2+ + Mg2+)-ATPase activity in MPM from long-term vitamin D-deplete rats resulted from an adaptation to low extracellular calcium rather than vitamin D depletion.
UR - http://www.scopus.com/inward/record.url?scp=0022273604&partnerID=8YFLogxK
M3 - Article
C2 - 2933394
AN - SCOPUS:0022273604
SN - 0021-9258
VL - 260
SP - 14953
EP - 14957
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 28
ER -