TY - JOUR
T1 - Cartilage-specific β-catenin signaling regulates chondrocyte maturation, generation of ossification centers, and perichondrial bone formation during skeletal development
AU - Dao, Debbie Y.
AU - Jonason, Jennifer H.
AU - Zhang, Yongchun
AU - Hsu, Wei
AU - Chen, Di
AU - Hilton, Matthew J.
AU - O'Keefe, Regis J.
PY - 2012/8
Y1 - 2012/8
N2 - The WNT/β-catenin signaling pathway is a critical regulator of chondrocyte and osteoblast differentiation during multiple phases of cartilage and bone development. Although the importance of β-catenin signaling during the process of endochondral bone development has been previously appreciated using a variety of genetic models that manipulate β-catenin in skeletal progenitors and osteoblasts, genetic evidence demonstrating a specific role for β-catenin in committed growth-plate chondrocytes has been less robust. To identify the specific role of cartilage-derived β-catenin in regulating cartilage and bone development, we studied chondrocyte-specific gain- and loss-of-function genetic mouse models using the tamoxifen-inducible Col2Cre ERT2 transgene in combination with β-catenin fx(exon3)/wt or β-cateninfx/fx floxed alleles, respectively. From these genetic models and biochemical data, three significant and novel findings were uncovered. First, cartilage-specific β-catenin signaling promotes chondrocyte maturation, possibly involving a bone morphogenic protein 2 (BMP2)-mediated mechanism. Second, cartilage-specific β-catenin facilitates primary and secondary ossification center formation via the induction of chondrocyte hypertrophy, possibly through enhanced matrix metalloproteinase (MMP) expression at sites of cartilage degradation, and potentially by enhancing Indian hedgehog (IHH) signaling activity to recruit vascular tissues. Finally, cartilage-specific β-catenin signaling promotes perichondrial bone formation possibly via a mechanism in which BMP2 and IHH paracrine signals synergize to accelerate perichondrial osteoblastic differentiation. The work presented here supports the concept that the cartilage-derived β-catenin signal is a central mediator for major events during endochondral bone formation, including chondrocyte maturation, primary and secondary ossification center development, vascularization, and perichondrial bone formation.
AB - The WNT/β-catenin signaling pathway is a critical regulator of chondrocyte and osteoblast differentiation during multiple phases of cartilage and bone development. Although the importance of β-catenin signaling during the process of endochondral bone development has been previously appreciated using a variety of genetic models that manipulate β-catenin in skeletal progenitors and osteoblasts, genetic evidence demonstrating a specific role for β-catenin in committed growth-plate chondrocytes has been less robust. To identify the specific role of cartilage-derived β-catenin in regulating cartilage and bone development, we studied chondrocyte-specific gain- and loss-of-function genetic mouse models using the tamoxifen-inducible Col2Cre ERT2 transgene in combination with β-catenin fx(exon3)/wt or β-cateninfx/fx floxed alleles, respectively. From these genetic models and biochemical data, three significant and novel findings were uncovered. First, cartilage-specific β-catenin signaling promotes chondrocyte maturation, possibly involving a bone morphogenic protein 2 (BMP2)-mediated mechanism. Second, cartilage-specific β-catenin facilitates primary and secondary ossification center formation via the induction of chondrocyte hypertrophy, possibly through enhanced matrix metalloproteinase (MMP) expression at sites of cartilage degradation, and potentially by enhancing Indian hedgehog (IHH) signaling activity to recruit vascular tissues. Finally, cartilage-specific β-catenin signaling promotes perichondrial bone formation possibly via a mechanism in which BMP2 and IHH paracrine signals synergize to accelerate perichondrial osteoblastic differentiation. The work presented here supports the concept that the cartilage-derived β-catenin signal is a central mediator for major events during endochondral bone formation, including chondrocyte maturation, primary and secondary ossification center development, vascularization, and perichondrial bone formation.
KW - CARTILAGE
KW - CHONDROCYTE
KW - PERICHONDRIUM
KW - SKELETAL DEVELOPMENT
KW - β-CATENIN
UR - http://www.scopus.com/inward/record.url?scp=84864145218&partnerID=8YFLogxK
U2 - 10.1002/jbmr.1639
DO - 10.1002/jbmr.1639
M3 - Article
C2 - 22508079
AN - SCOPUS:84864145218
SN - 0884-0431
VL - 27
SP - 1680
EP - 1694
JO - Journal of Bone and Mineral Research
JF - Journal of Bone and Mineral Research
IS - 8
ER -