TY - JOUR
T1 - Cardiomyocyte NF-κB p65 promotes adverse remodelling, apoptosis, and endoplasmic reticulum stress in heart failure
AU - Hamid, Tariq
AU - Guo, Shang Z.
AU - Kingery, Justin R.
AU - Xiang, Xilin
AU - Dawn, Buddhadeb
AU - Prabhu, Sumanth D.
N1 - Funding Information:
This work was supported by a VA Merit Award (S.D.P.), NIH grants HL-78825 and HL-99014 (S.D.P.), and an AHA SDG award 0835456N (T.H.).
PY - 2011/1/1
Y1 - 2011/1/1
N2 - Aims The role of nuclear factor (NF)-κB in heart failure (HF) is not well defined. We sought to determine whether myocyte-localized NF-κB p65 activation in HF exacerbates post-infarction remodelling and promotes maladaptive endoplasmic reticulum (ER) stress.Methods and results Non-transgenic (NTg) and transgenic (Tg) mice with myocyte-restricted overexpression of a phosphorylation-resistant inhibitor of κBα (IκBα S32A,S36A) underwent coronary ligation (to induce HF) or sham operation. Over 4 weeks, the remote myocardium of ligated hearts exhibited robust NF-κB activation that was almost exclusively p65 beyond 24 h. Compared with sham at 4 weeks, NTg HF hearts were dilated and dysfunctional, and exhibited hypertrophy, fibrosis, up-regulation of inflammatory cytokines, increased apoptosis, down-regulation of ER protein chaperones, and up-regulation of the ER stress-activated pro-apoptotic factor CHOP. Compared with NTg HF, Tg-IκBαS32A,S36A HF mice exhibited: (i) improved survival, chamber remodelling, systolic function, and pulmonary congestion, (ii) markedly diminished NF-κB p65 activation, cytokine expression, and fibrosis, and (iii) a three-fold reduction in apoptosis. Moreover, Tg-IκBαS32A,S36A HF hearts exhibited maintained expression of ER chaperones and CHOP when compared with sham. In cardiomyocytes, NF-κB activation was required for ER stress-mediated apoptosis, whereas abrogation of myocyte NF-κB shifted the ER stress response to one of adaptation and survival. Conclusion Persistent myocyte NF-κB p65 activation in HF exacerbates cardiac remodelling by imparting pro-inflammatory, pro-fibrotic, and pro-apoptotic effects. p65 modulation of cell death in HF may occur in part from NF-κB-mediated transformation of the ER stress response from one of adaptation to one of apoptosis.
AB - Aims The role of nuclear factor (NF)-κB in heart failure (HF) is not well defined. We sought to determine whether myocyte-localized NF-κB p65 activation in HF exacerbates post-infarction remodelling and promotes maladaptive endoplasmic reticulum (ER) stress.Methods and results Non-transgenic (NTg) and transgenic (Tg) mice with myocyte-restricted overexpression of a phosphorylation-resistant inhibitor of κBα (IκBα S32A,S36A) underwent coronary ligation (to induce HF) or sham operation. Over 4 weeks, the remote myocardium of ligated hearts exhibited robust NF-κB activation that was almost exclusively p65 beyond 24 h. Compared with sham at 4 weeks, NTg HF hearts were dilated and dysfunctional, and exhibited hypertrophy, fibrosis, up-regulation of inflammatory cytokines, increased apoptosis, down-regulation of ER protein chaperones, and up-regulation of the ER stress-activated pro-apoptotic factor CHOP. Compared with NTg HF, Tg-IκBαS32A,S36A HF mice exhibited: (i) improved survival, chamber remodelling, systolic function, and pulmonary congestion, (ii) markedly diminished NF-κB p65 activation, cytokine expression, and fibrosis, and (iii) a three-fold reduction in apoptosis. Moreover, Tg-IκBαS32A,S36A HF hearts exhibited maintained expression of ER chaperones and CHOP when compared with sham. In cardiomyocytes, NF-κB activation was required for ER stress-mediated apoptosis, whereas abrogation of myocyte NF-κB shifted the ER stress response to one of adaptation and survival. Conclusion Persistent myocyte NF-κB p65 activation in HF exacerbates cardiac remodelling by imparting pro-inflammatory, pro-fibrotic, and pro-apoptotic effects. p65 modulation of cell death in HF may occur in part from NF-κB-mediated transformation of the ER stress response from one of adaptation to one of apoptosis.
KW - Apoptosis
KW - Cardiac remodelling
KW - ER stress
KW - Heart failure
KW - NF-κB
UR - http://www.scopus.com/inward/record.url?scp=78650443223&partnerID=8YFLogxK
U2 - 10.1093/cvr/cvq274
DO - 10.1093/cvr/cvq274
M3 - Article
C2 - 20797985
AN - SCOPUS:78650443223
SN - 0008-6363
VL - 89
SP - 129
EP - 138
JO - Cardiovascular Research
JF - Cardiovascular Research
IS - 1
ER -