TY - JOUR
T1 - Cardiac motion and its dosimetric impact during radioablation for refractory ventricular tachycardia
AU - Harms, Joseph
AU - Schreibmann, Eduard
AU - Mccall, Neal S.
AU - Lloyd, Michael S.
AU - Higgins, Kristin A.
AU - Castillo, Richard
N1 - Publisher Copyright:
© 2023 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, LLC on behalf of The American Association of Physicists in Medicine.
PY - 2023/6
Y1 - 2023/6
N2 - Introduction: Cardiac radioablation (CR) is a noninvasive treatment option for patients with refractory ventricular tachycardia (VT) during which high doses of radiation, typically 25 Gy, are delivered to myocardial scar. In this study, we investigate motion from cardiac cycle and evaluate the dosimetric impact in a cohort of patients treated with CR. Methods: This retrospective study included eight patients treated at our institution who had respiratory-correlated and ECG-gated 4DCT scans acquired within 2 weeks of CR. Deformable image registration was applied between maximum systole (SYS) and diastole (DIAS) CTs to assess cardiac motion. The average respiratory-correlated CT (AVGresp) was deformably registered to the average cardiac (AVGcardiac), SYS, and DIAS CTs, and contours were propagated using the deformation vector fields (DVFs). Finally, the original treatment plan was recalculated on the deformed AVGresp CT for dosimetric assessment. Results: Motion magnitudes were measured as the mean (SD) value over the DVFs within each structure. Displacement during the cardiac cycle for all chambers was 1.4 (0.9) mm medially/laterally (ML), 1.6 (1.0) mm anteriorly/posteriorly (AP), and 3.0 (2.8) mm superiorly/inferiorly (SI). Displacement for the 12 distinct clinical target volumes (CTVs) was 1.7 (1.5) mm ML, 2.4 (1.1) mm AP, and 2.1 (1.5) SI. Displacements between the AVGresp and AVGcardiac scans were 4.2 (2.0) mm SI and 5.8 (1.4) mm total. Dose recalculations showed that cardiac motion may impact dosimetry, with dose to 95% of the CTV dropping from 27.0 (1.3) Gy on the AVGresp to 20.5 (7.1) Gy as estimated on the AVGcardiac. Conclusions: Cardiac CTV motion in this patient cohort is on average below 3 mm, location-dependent, and when not accounted for in treatment planning may impact target coverage. Further study is needed to assess the impact of cardiac motion on clinical outcomes.
AB - Introduction: Cardiac radioablation (CR) is a noninvasive treatment option for patients with refractory ventricular tachycardia (VT) during which high doses of radiation, typically 25 Gy, are delivered to myocardial scar. In this study, we investigate motion from cardiac cycle and evaluate the dosimetric impact in a cohort of patients treated with CR. Methods: This retrospective study included eight patients treated at our institution who had respiratory-correlated and ECG-gated 4DCT scans acquired within 2 weeks of CR. Deformable image registration was applied between maximum systole (SYS) and diastole (DIAS) CTs to assess cardiac motion. The average respiratory-correlated CT (AVGresp) was deformably registered to the average cardiac (AVGcardiac), SYS, and DIAS CTs, and contours were propagated using the deformation vector fields (DVFs). Finally, the original treatment plan was recalculated on the deformed AVGresp CT for dosimetric assessment. Results: Motion magnitudes were measured as the mean (SD) value over the DVFs within each structure. Displacement during the cardiac cycle for all chambers was 1.4 (0.9) mm medially/laterally (ML), 1.6 (1.0) mm anteriorly/posteriorly (AP), and 3.0 (2.8) mm superiorly/inferiorly (SI). Displacement for the 12 distinct clinical target volumes (CTVs) was 1.7 (1.5) mm ML, 2.4 (1.1) mm AP, and 2.1 (1.5) SI. Displacements between the AVGresp and AVGcardiac scans were 4.2 (2.0) mm SI and 5.8 (1.4) mm total. Dose recalculations showed that cardiac motion may impact dosimetry, with dose to 95% of the CTV dropping from 27.0 (1.3) Gy on the AVGresp to 20.5 (7.1) Gy as estimated on the AVGcardiac. Conclusions: Cardiac CTV motion in this patient cohort is on average below 3 mm, location-dependent, and when not accounted for in treatment planning may impact target coverage. Further study is needed to assess the impact of cardiac motion on clinical outcomes.
KW - cardiac radioablation
KW - deformable image registration
KW - motion management
KW - SBRT
KW - ventricular tachycardia
UR - http://www.scopus.com/inward/record.url?scp=85147524206&partnerID=8YFLogxK
U2 - 10.1002/acm2.13925
DO - 10.1002/acm2.13925
M3 - Article
C2 - 36747376
AN - SCOPUS:85147524206
SN - 1526-9914
VL - 24
JO - Journal of applied clinical medical physics
JF - Journal of applied clinical medical physics
IS - 6
M1 - e13925
ER -