TY - JOUR
T1 - Capping protein regulators fine-tune actin assembly dynamics
AU - Edwards, Marc
AU - Zwolak, Adam
AU - Schafer, Dorothy A.
AU - Sept, David
AU - Dominguez, Roberto
AU - Cooper, John A.
N1 - Publisher Copyright:
© 2014 Macmillan Publishers Limited. All rights reserved.
PY - 2014/1/1
Y1 - 2014/1/1
N2 - Capping protein (CP) binds the fast growing barbed end of the actin filament and regulates actin assembly by blocking the addition and loss of actin subunits. Recent studies provide new insights into how CP and barbed-end capping are regulated. Filament elongation factors, such as formins and ENA/VASP (enabled/vasodilator-stimulated phosphoprotein), indirectly regulate CP by competing with CP for binding to the barbed end, whereas other molecules, including V-1 and phospholipids, directly bind to CP and sterically block its interaction with the filament. In addition, a diverse and unrelated group of proteins interact with CP through a conserved 'capping protein interaction' (CPI) motif. These proteins, including CARMIL (capping protein, ARP2/3 and myosin I linker), CD2AP (CD2-associated protein) and the WASH (WASP and SCAR homologue) complex subunit FAM21, recruit CP to specific subcellular locations and modulate its actin-capping activity via allosteric effects.
AB - Capping protein (CP) binds the fast growing barbed end of the actin filament and regulates actin assembly by blocking the addition and loss of actin subunits. Recent studies provide new insights into how CP and barbed-end capping are regulated. Filament elongation factors, such as formins and ENA/VASP (enabled/vasodilator-stimulated phosphoprotein), indirectly regulate CP by competing with CP for binding to the barbed end, whereas other molecules, including V-1 and phospholipids, directly bind to CP and sterically block its interaction with the filament. In addition, a diverse and unrelated group of proteins interact with CP through a conserved 'capping protein interaction' (CPI) motif. These proteins, including CARMIL (capping protein, ARP2/3 and myosin I linker), CD2AP (CD2-associated protein) and the WASH (WASP and SCAR homologue) complex subunit FAM21, recruit CP to specific subcellular locations and modulate its actin-capping activity via allosteric effects.
UR - http://www.scopus.com/inward/record.url?scp=84910150867&partnerID=8YFLogxK
U2 - 10.1038/nrm3869
DO - 10.1038/nrm3869
M3 - Review article
C2 - 25207437
AN - SCOPUS:84910150867
SN - 1471-0072
VL - 15
SP - 677
EP - 689
JO - Nature Reviews Molecular Cell Biology
JF - Nature Reviews Molecular Cell Biology
IS - 10
ER -