TY - JOUR
T1 - Campylobacter Colonization, Environmental Enteric Dysfunction, Stunting, and Associated Risk Factors Among Young Children in Rural Ethiopia
T2 - A Cross-Sectional Study From the Campylobacter Genomics and Environmental Enteric Dysfunction (CAGED) Project
AU - Chen, Dehao
AU - McKune, Sarah L.
AU - Singh, Nitya
AU - Yousuf Hassen, Jemal
AU - Gebreyes, Wondwossen
AU - Manary, Mark J.
AU - Bardosh, Kevin
AU - Yang, Yang
AU - Diaz, Nicholas
AU - Mohammed, Abdulmuen
AU - Terefe, Yitagele
AU - Roba, Kedir Teji
AU - Ketema, Mengistu
AU - Ameha, Negassi
AU - Assefa, Nega
AU - Rajashekara, Gireesh
AU - Deblais, Loïc
AU - Ghanem, Mostafa
AU - Yimer, Getnet
AU - Havelaar, Arie H.
N1 - Funding Information:
We thank Beyan Abdullahi, Yeharerwork Abebaw, Elias Ahmed, Ibsa Ahmed, Jafer Amin, Bahar Mummed, Seyum Tezera, Ibsa Usmane (Haramaya University), Isabel Ordiz (Washington University in St. Louis), Yosra Mohamed (Ohio State University), Jenna Daniels, and Anna Rabil (University of Florida) for their contributions to the project. We thank Srevi Devaraj (Clinical Chemistry and POCT, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX) for analysis of sugars in the dual sugar absorption test and Vida Ahyong and Katrina Kalantar (Chan Zuckerberg Biohub, San Francisco, CA) for their support in performing and interpreting the shotgun sequence analysis. The CAGED project was supported by a Technical Advisory Group consisting of Eric Fèvre (University of Liverpool and Ineternational Livestock Research Institute), Nigel French (Massey University), Aulo Gelli (International Food Policy Research Institute), Andrew Jones (University of Michigan), Vivek Kapur, (Penn State University), Nick Juleff and Supriya Kumar (Bill & Melinda Gates Foundation) and James Platts-Mills (University of Virginia). Research reported in this publication was supported by the University of Florida Clinical and Translational Science Institute, which was supported in part by the NIH National Center for Advancing Translational Sciences under award number UL1TR001427. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The study would not have been possible without cooperation of study communities and local administration of the study kebeles. We would like to express our appreciation for the study households and all who supported the study directly or otherwise.
Funding Information:
We thank Beyan Abdullahi, Yeharerwork Abebaw, Elias Ahmed, Ibsa Ahmed, Jafer Amin, Bahar Mummed, Seyum Tezera, Ibsa Usmane (Haramaya University), Isabel Ordiz (Washington University in St. Louis), Yosra Mohamed (Ohio State University), Jenna Daniels, and Anna Rabil (University of Florida) for their contributions to the project. We thank Srevi Devaraj (Clinical Chemistry and POCT, Texas Children's Hospital, Baylor College of Medicine, Houston, TX) for analysis of sugars in the dual sugar absorption test and Vida Ahyong and Katrina Kalantar (Chan Zuckerberg Biohub, San Francisco, CA) for their support in performing and interpreting the shotgun sequence analysis. The CAGED project was supported by a Technical Advisory Group consisting of Eric Fèvre (University of Liverpool and Ineternational Livestock Research Institute), Nigel French (Massey University), Aulo Gelli (International Food Policy Research Institute), Andrew Jones (University of Michigan), Vivek Kapur, (Penn State University), Nick Juleff and Supriya Kumar (Bill & Melinda Gates Foundation) and James Platts-Mills (University of Virginia). Research reported in this publication was supported by the University of Florida Clinical and Translational Science Institute, which was supported in part by the NIH National Center for Advancing Translational Sciences under award number UL1TR001427. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The study would not have been possible without cooperation of study communities and local administration of the study kebeles. We would like to express our appreciation for the study households and all who supported the study directly or otherwise. Funding. The University of Florida was funded by the Bill & Melinda Gates Foundation to research and address food insecurity issues in Ethiopia and Burkina Faso through the project Equip—Strengthening Smallholder Livestock Systems for the Future (Grant Number: OPP11755487). These funds are administered by the Feed the Future Innovation Lab for Livestock Systems, which was established by funding from the United States Agency for International Development (USAID) and is co-led by the University of Florida's Institute of Food and Agricultural Sciences and the International Livestock Research Institute. Support for the Feed the Future Innovation Lab for Livestock Systems is made possible by the generous support of the American people through USAID. The contents are the responsibility of the authors and do not necessarily reflect the views of USAID or the United States Government.
Funding Information:
The University of Florida was funded by the Bill & Melinda Gates Foundation to research and address food insecurity issues in Ethiopia and Burkina Faso through the project Equip— Strengthening Smallholder Livestock Systems for the Future (Grant Number: OPP11755487). These funds are administered by the Feed the Future Innovation Lab for Livestock Systems, which was established by funding from the United States Agency for International Development (USAID) and is co-led by the University of Florida’s Institute of Food and Agricultural Sciences and the International Livestock Research Institute. Support for the Feed the Future Innovation Lab for Livestock Systems is made possible by the generous support of the American people through USAID. The contents are the responsibility of the
Publisher Copyright:
© Copyright © 2021 Chen, McKune, Singh, Yousuf Hassen, Gebreyes, Manary, Bardosh, Yang, Diaz, Mohammed, Terefe, Roba, Ketema, Ameha, Assefa, Rajashekara, Deblais, Ghanem, Yimer and Havelaar.
PY - 2021/1/21
Y1 - 2021/1/21
N2 - Livestock farming provides a possible mechanism by which smallholder farmers can meet their household need for animal source foods (ASF), which may reduce the risk of stunting. However, direct/indirect contacts with domestic animals may increase colonization by Campylobacter spp., which has been associated with Environmental Enteric Dysfunction (EED) and stunting. A cross-sectional study involving 102 randomly selected children between 12 and 16 months of age was conducted in rural eastern Ethiopia to establish prevalence rates of Campylobacter colonization, EED, and stunting, and evaluate potential risk factors. Data were collected between September and December 2018. The prevalence of EED and stunting was 50% (95% CI: 40–60%) and 41% (95% CI: 32–51%), respectively. Among enrolled children, 56% had consumed some ASF in the previous 24 h; 47% had diarrhea and 50% had fever in the past 15 days. 54, 63, 71 or 43% of households owned at least one chicken, cow/bull, goat, or sheep; 54 (53%) households kept chickens indoors overnight and only half of these confined the animals. Sanitation was poor, with high levels of unimproved latrines and open defecation. Most households had access to an improved source of drinking water. The prevalence of Campylobacter colonization was 50% (95% CI: 41–60%) by PCR. In addition to the thermotolerant species Campylobacter jejuni, Campylobacter coli and Campylobacter upsaliensis, non-thermotolerant species related to Campylobacter hyointestinalis and Campylobacter fetus were frequently detected by Meta-total RNA sequencing (MeTRS). Current breastfeeding and ASF consumption increased the odds of Campylobacter detection by PCR, while improved drinking water supply decreased the odds of EED. No risk factors were significantly associated with stunting. Further studies are necessary to better understand reservoirs and transmission pathways of Campylobacter spp. and their potential impact on child health.
AB - Livestock farming provides a possible mechanism by which smallholder farmers can meet their household need for animal source foods (ASF), which may reduce the risk of stunting. However, direct/indirect contacts with domestic animals may increase colonization by Campylobacter spp., which has been associated with Environmental Enteric Dysfunction (EED) and stunting. A cross-sectional study involving 102 randomly selected children between 12 and 16 months of age was conducted in rural eastern Ethiopia to establish prevalence rates of Campylobacter colonization, EED, and stunting, and evaluate potential risk factors. Data were collected between September and December 2018. The prevalence of EED and stunting was 50% (95% CI: 40–60%) and 41% (95% CI: 32–51%), respectively. Among enrolled children, 56% had consumed some ASF in the previous 24 h; 47% had diarrhea and 50% had fever in the past 15 days. 54, 63, 71 or 43% of households owned at least one chicken, cow/bull, goat, or sheep; 54 (53%) households kept chickens indoors overnight and only half of these confined the animals. Sanitation was poor, with high levels of unimproved latrines and open defecation. Most households had access to an improved source of drinking water. The prevalence of Campylobacter colonization was 50% (95% CI: 41–60%) by PCR. In addition to the thermotolerant species Campylobacter jejuni, Campylobacter coli and Campylobacter upsaliensis, non-thermotolerant species related to Campylobacter hyointestinalis and Campylobacter fetus were frequently detected by Meta-total RNA sequencing (MeTRS). Current breastfeeding and ASF consumption increased the odds of Campylobacter detection by PCR, while improved drinking water supply decreased the odds of EED. No risk factors were significantly associated with stunting. Further studies are necessary to better understand reservoirs and transmission pathways of Campylobacter spp. and their potential impact on child health.
KW - Campylobacter
KW - Ethiopia
KW - cross-sectional study
KW - environmental enteric dysfunction
KW - smallholder farming
KW - undernutrition
UR - http://www.scopus.com/inward/record.url?scp=85100693013&partnerID=8YFLogxK
U2 - 10.3389/fpubh.2020.615793
DO - 10.3389/fpubh.2020.615793
M3 - Article
C2 - 33553097
AN - SCOPUS:85100693013
VL - 8
JO - Frontiers in Public Health
JF - Frontiers in Public Health
SN - 2296-2565
M1 - 615793
ER -