Calcium influx through NMDA receptors, chronic receptor inhibition by ethanol and 2-amino-5-phosphonopentanoic acid, and receptor protein expression

Xingyu Chen, David Moore-Nichols, Hoanh Nguyen, Elias K. Michaelis

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

Chronic treatment of neurons with either ethanol or competitive and noncompetitive antagonists of NMDA receptors leads to enhanced expression of NMDA receptor density and function in neurons. The signal transduction pathways for such receptor up-regulation are not known. The focus of the present study was on the role of Ca2+ entry into neurons, either through receptor or voltage-gated channels, in the expression of the NMDA receptor subunit NR1 and the 71-kDa glutamate-binding protein (GBP) of a glutamate/NMDA receptor-like complex. Chronic inhibition of NMDA receptors in cortical neurons in primary cultures by either 100 mM ethanol or 100 μM 2- amino-5-phosphonopentanoic acid (2-AP5) increased the expression of NR1 and GBP. The effect of 2-AP5 on the expression of the two proteins was not additive with that of ethanol when neuronal cultures were treated with both agents at the same time. However, the effects of ethanol on NR1 and GBP expression were blocked by the simultaneous treatment with NMDA (50 μM). Activation or inhibition of other glutamate ionotropic receptors had no effect on the expression of NR1 and GBP. The inhibition of L- or N-type voltage-sensitive Ca2+ channels and voltage-gated Na+ channels also had little effect on the expression of either protein; neither did exposure of neurons to elevated extracellular Ca2+ concentrations (3 or 5 mM). On the other hand, treatment of neurons for 48 h with the intracellular Ca2+ chelator BAPTA-AM as well as partial chelation of extracellular Ca2+ with EGTA caused an up-regulation in NR1 and GBP expression. The enhanced expression of NR1 in neurons treated for 48 h with either ethanol or EGTA was correlated with increases in the activity of NMDA receptors demonstrated as a doubling of the NMDA-stimulated rise in intracellular free Ca2+ concentration. The effects of chronic administration of EGTA on both NR1 expression as well as NMDA receptor function were probably related to an acute inhibition by EGTA of NMDA-induced Ca2+ influx into neurons. It appears that the expression of both the NR1 subunit of NMDA receptors and the GBP of a receptor-like complex is regulated by intracellular Ca2+, especially that entering through NMDA receptor ion channels.

Original languageEnglish
Pages (from-to)1969-1980
Number of pages12
JournalJournal of Neurochemistry
Volume72
Issue number5
DOIs
StatePublished - 1999

Keywords

  • Calcium influx
  • Glutamate-binding protein
  • N-Methyl-D-aspartate receptor

Fingerprint

Dive into the research topics of 'Calcium influx through NMDA receptors, chronic receptor inhibition by ethanol and 2-amino-5-phosphonopentanoic acid, and receptor protein expression'. Together they form a unique fingerprint.

Cite this