TY - JOUR
T1 - Calcium influx through N-methyl-d-aspartate channels activates a potassium current in postnatal rat hippocampal neurons
AU - Zorumski, Charles F.
AU - Thio, Liu Lin
AU - Clark, Gary D.
AU - Clifford, David B.
N1 - Funding Information:
This work was supported by NIMH Physician Scientist Award MH00630, the Khngensteln Foundatton, the Bantly Foundation (C.F_Z.) and a fellowship from the American Academy of Neurology (G D.C_). The authors thank Dr L O Trussell for comments on the manuscrtpt
PY - 1989/5/8
Y1 - 1989/5/8
N2 - Calcium-activated potassium conductances play important roles in modulating neuronal excitability. Indeed, the effects of some neurotransmitters such as acetylcholine and norepinephrine are, in part, due to actions on these conductances. We have found that the N-methyl-d-aspartate (NMDA) class of excitatory amino acid receptors also is coupled to a calcium activated potassium current. In voltage-clamped postnatal rat hippocampal neurons, NMDA responses consist of an initial inward cationic current followed by a slowly developing outward current carried by potassium ions. The slow outward current always follows the inward current, is associated with an increase in membrane conductance and is dependent on the influx of calcium ions. Similar responses are produced by other agonists active at NMDA receptors, including aspartate, glutamate and ibotenate, but are not activated by kainate, quisqualate or α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA). Inhibition of the NMDA gated inward current by a competitive antagonist, 2-amino-5-phosphonovalerate (APV), eliminates the outward current. From these results we conclude that calcium influx through NMDA channels activates a potassium current. The extended time course of this outward current suggests that NMDA receptors may modulate neuronal excitability long after the opening of the NMDA channel.
AB - Calcium-activated potassium conductances play important roles in modulating neuronal excitability. Indeed, the effects of some neurotransmitters such as acetylcholine and norepinephrine are, in part, due to actions on these conductances. We have found that the N-methyl-d-aspartate (NMDA) class of excitatory amino acid receptors also is coupled to a calcium activated potassium current. In voltage-clamped postnatal rat hippocampal neurons, NMDA responses consist of an initial inward cationic current followed by a slowly developing outward current carried by potassium ions. The slow outward current always follows the inward current, is associated with an increase in membrane conductance and is dependent on the influx of calcium ions. Similar responses are produced by other agonists active at NMDA receptors, including aspartate, glutamate and ibotenate, but are not activated by kainate, quisqualate or α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA). Inhibition of the NMDA gated inward current by a competitive antagonist, 2-amino-5-phosphonovalerate (APV), eliminates the outward current. From these results we conclude that calcium influx through NMDA channels activates a potassium current. The extended time course of this outward current suggests that NMDA receptors may modulate neuronal excitability long after the opening of the NMDA channel.
KW - Calcium
KW - Glutamate
KW - Hippocampus
KW - N-Methyl-d-aspartate
KW - Potassium conductance
KW - Voltage clamp
UR - http://www.scopus.com/inward/record.url?scp=0024515575&partnerID=8YFLogxK
U2 - 10.1016/0304-3940(89)90462-X
DO - 10.1016/0304-3940(89)90462-X
M3 - Article
C2 - 2542845
AN - SCOPUS:0024515575
SN - 0304-3940
VL - 99
SP - 293
EP - 299
JO - Neuroscience Letters
JF - Neuroscience Letters
IS - 3
ER -