TY - JOUR
T1 - C-11 radiochemistry in cancer imaging applications
AU - Tu, Z.
AU - Mach, R. H.
PY - 2010
Y1 - 2010
N2 - Carbon-11 (C-11) radiotracers are widely used for the early diagnosis of cancer, monitoring therapeutic response to cancer treatment, and pharmacokinetic investigations of anticancer drugs. PET imaging permits non-invasive monitoring of metabolic processes and molecular targets, while carbon-11 radiotracers allow a hot for cold supstitution of biologically active molecules. Advances in organic synthetic chemistry and radiochemistry as well as improved automated techniques for radiosynthesis have encouraged investigators in developing carbon-11 tracers for use in oncology imaging studies. The short half-life of carbon-11 (20.38 minutes) creates special challenges for the synthesis of C-11 labeled tracers; these include the challenges of synthesizing C-11 target compounds with high radiochemical yield, high radiochemical purity and high specific activity in a short time and on a very small scale. The optimization of conditions for making a carbon-11 tracer include the late introduction of the C-11 isotope, the rapid formation and purification of the target compound, and the use of automated systems to afford a high yield of the target compound in a short time. In this review paper, we first briefly introduce some basic principles of PET imaging of cancer; we then discuss principles of carbon-11 radiochemistry, focus on specific advances in radiochemistry, and describe the synthesis of C-11 radiopharmaceuticals developed for cancer imaging. The carbon-11 radiochemistry approaches described include the N,O, and S-alkylations of [11C]methyl iodide/[11C]methyl triflate and analogues of [11C]methyl iodide and their applications for making carbon-11 tracers; we then address recent advances in exploring a transmetallic complex mediated [11C]carbonyl reaction for oncologic targets.
AB - Carbon-11 (C-11) radiotracers are widely used for the early diagnosis of cancer, monitoring therapeutic response to cancer treatment, and pharmacokinetic investigations of anticancer drugs. PET imaging permits non-invasive monitoring of metabolic processes and molecular targets, while carbon-11 radiotracers allow a hot for cold supstitution of biologically active molecules. Advances in organic synthetic chemistry and radiochemistry as well as improved automated techniques for radiosynthesis have encouraged investigators in developing carbon-11 tracers for use in oncology imaging studies. The short half-life of carbon-11 (20.38 minutes) creates special challenges for the synthesis of C-11 labeled tracers; these include the challenges of synthesizing C-11 target compounds with high radiochemical yield, high radiochemical purity and high specific activity in a short time and on a very small scale. The optimization of conditions for making a carbon-11 tracer include the late introduction of the C-11 isotope, the rapid formation and purification of the target compound, and the use of automated systems to afford a high yield of the target compound in a short time. In this review paper, we first briefly introduce some basic principles of PET imaging of cancer; we then discuss principles of carbon-11 radiochemistry, focus on specific advances in radiochemistry, and describe the synthesis of C-11 radiopharmaceuticals developed for cancer imaging. The carbon-11 radiochemistry approaches described include the N,O, and S-alkylations of [11C]methyl iodide/[11C]methyl triflate and analogues of [11C]methyl iodide and their applications for making carbon-11 tracers; we then address recent advances in exploring a transmetallic complex mediated [11C]carbonyl reaction for oncologic targets.
KW - Cancer imaging
KW - Carbon-11
KW - Molecular imaging
KW - Pet imaging
KW - Radiochemistry
KW - Radiosynthesis
UR - http://www.scopus.com/inward/record.url?scp=77955611176&partnerID=8YFLogxK
U2 - 10.2174/156802610791384261
DO - 10.2174/156802610791384261
M3 - Article
C2 - 20388115
AN - SCOPUS:77955611176
SN - 1568-0266
VL - 10
SP - 1060
EP - 1095
JO - Current Topics in Medicinal Chemistry
JF - Current Topics in Medicinal Chemistry
IS - 11
ER -