TY - JOUR
T1 - BTLA and HVEM Cross Talk Regulates Inhibition and Costimulation
AU - Gavrieli, Maya
AU - Sedy, John
AU - Nelson, Christopher A.
AU - Murphy, Kenneth M.
PY - 2006
Y1 - 2006
N2 - Recently a new inhibitory immunoglobulin domain-containing lymphocyte receptor was identified on the basis of its T helper 1 (TH1)-selective expression in murine T cell lines, which was named B and T lymphocyte attenuator (BTLA). Several groups have confirmed the initial characterization of BTLA as an inhibitory receptor, which was initially inferred from the mild increases in several parameters of BTLA-deficient mice. The initial expectation that BTLA would interact with a B7 family ligand, such as the B7x protein, was surprisingly overturned with the functional cloning of the actual BTLA ligand as herpesvirus entry mediator (HVEM). This was unexpected largely due to the fact that this interaction represents the convergence of two very different, although each quite extensive, families of receptors and ligands. The interaction of BTLA, which belongs to the CD28 family of the immunoglobulin superfamily, and HVEM, a costimulatory tumor-necrosis factor (TNF) receptor (TNFR), is quite unique in that it is the only receptor-ligand interaction that directly bridges these two families of receptors. This interaction has raised many questions about how receptors from two different families could interact and which are the signaling events downstream of receptor ligation. As we discuss here and recently demonstrated, HVEM interaction with BTLA serves to negatively regulate T cell responses, in contrast to the strong activation observed when HVEM engages its endogenous ligand from the TNF family. Finally, as studies of BTLA are just now beginning to extend beyond the initial characterizations, it is becoming clear that there are many complex issues remaining to be resolved, particularly potential polymorphisms that may engender disease susceptibility in the human.
AB - Recently a new inhibitory immunoglobulin domain-containing lymphocyte receptor was identified on the basis of its T helper 1 (TH1)-selective expression in murine T cell lines, which was named B and T lymphocyte attenuator (BTLA). Several groups have confirmed the initial characterization of BTLA as an inhibitory receptor, which was initially inferred from the mild increases in several parameters of BTLA-deficient mice. The initial expectation that BTLA would interact with a B7 family ligand, such as the B7x protein, was surprisingly overturned with the functional cloning of the actual BTLA ligand as herpesvirus entry mediator (HVEM). This was unexpected largely due to the fact that this interaction represents the convergence of two very different, although each quite extensive, families of receptors and ligands. The interaction of BTLA, which belongs to the CD28 family of the immunoglobulin superfamily, and HVEM, a costimulatory tumor-necrosis factor (TNF) receptor (TNFR), is quite unique in that it is the only receptor-ligand interaction that directly bridges these two families of receptors. This interaction has raised many questions about how receptors from two different families could interact and which are the signaling events downstream of receptor ligation. As we discuss here and recently demonstrated, HVEM interaction with BTLA serves to negatively regulate T cell responses, in contrast to the strong activation observed when HVEM engages its endogenous ligand from the TNF family. Finally, as studies of BTLA are just now beginning to extend beyond the initial characterizations, it is becoming clear that there are many complex issues remaining to be resolved, particularly potential polymorphisms that may engender disease susceptibility in the human.
UR - http://www.scopus.com/inward/record.url?scp=34547695667&partnerID=8YFLogxK
U2 - 10.1016/S0065-2776(06)92004-5
DO - 10.1016/S0065-2776(06)92004-5
M3 - Review article
C2 - 17145304
AN - SCOPUS:34547695667
SN - 0065-2776
VL - 92
SP - 157
EP - 185
JO - Advances in Immunology
JF - Advances in Immunology
ER -