TY - JOUR
T1 - B0 field homogeneity recommendations, specifications, and measurement units for MRI in radiation therapy
AU - Gach, H. Michael
AU - Curcuru, Austen N.
AU - Mutic, Sasa
AU - Kim, Taeho
N1 - Publisher Copyright:
© 2020 American Association of Physicists in Medicine
PY - 2020/9/1
Y1 - 2020/9/1
N2 - Purpose: The purpose is: (a) Relate magnetic resonance imaging (MRI) quality recommendations for radiation therapy (RT) to B0 field homogeneity; (b) Evaluate manufacturer specifications of B0 homogeneity for 34 commercial whole-body MRI systems based on the MRI quality recommendations and RT application; (c) Measure field homogeneity in five commercial MRI systems and one commercial MRI-Linac used in RT and compare the results with their B0 homogeneity specifications. Methods: Magnetic resonance imaging quality recommendations for spatial integrity, image blurring, fat saturation, and null banding in RT were developed based on the literature. Guaranteed (maximum) and typical B0 field homogeneity specifications for various diameter spherical volumes (DSVs) were provided by GE, Philips, Siemens, and Canon. For each system, the DSV that conforms to each MRI quality recommendation and anatomical RT application was estimated based on the manufacturer specifications. B0 field homogeneity was measured on six MRI systems including Philips (1.5 T), Siemens (1.5 and 3 T), and ViewRay MRI (0.35 T) systems using 24 and 35 cm DSV spherical phantoms. Two measurement techniques were used: (a) MRI using phase contrast field mapping to measure peak-to-peak (pk-pk), volume root mean square (VRMS), and standard deviation (SD); and (b) Magnetic resonance (MR) spectroscopy by acquiring a volumetric free induction decay (FID) to measure full width at half maximum (FWHM). The measurements were used to assess: (a) conformance with the manufacturer specifications; and (b) the relationship between the various field homogeneity measurement units. Measurements were made with and without gradient shimming (gradshim) or second-order active shimming. Multiple comparisons, analysis of variance (ANOVA), and Pearson correlations were performed to assess the dependence of pk-pk, VRMS, SD, and FWHM measurements of field homogeneity on shim volume, level of shim, and MRI system. Results: For a 40 cm DSV, the B0 homogeneity specifications ranged from 0.35 to 5 ppm (median = 0.75 ppm) VRMS for 1.5 T systems and 0.2 to 1.4 ppm (median = 0.5 ppm) VRMS for 3 T systems. The usable DSVs ranged from 16 to 49 cm (median = 35 cm) based on the image quality recommendations and the manufacturer specifications. There was general compliance between the six measured field homogeneities and manufacturer specifications although signal dephasing was observed in two systems at ' 35 cm DSV. The relationships between pk-pk, VRMS, SD, and FWHM varied based on MRI system, shim volume, and quality of shim. However, VRMS and SD measurements were highly correlated. Conclusions: The delineation of the diseased lesion from organs at risk is the main priority for RT. Therefore, field homogeneity performance for RT must minimize image blurring and image artifacts (null bands and signal dephasing) while optimizing spatial integrity and fat saturation. Based on the specifications and recommendations for field homogeneity, some MRI systems are not well suited to meet the strict demands of RT particularly for the large imaging volumes used in body MRI. VRMS and SD measurements of B0 field homogeneity tend to be more stable and sensitive to field inhomogeneities in RT applications than pk-pk and FWHM.
AB - Purpose: The purpose is: (a) Relate magnetic resonance imaging (MRI) quality recommendations for radiation therapy (RT) to B0 field homogeneity; (b) Evaluate manufacturer specifications of B0 homogeneity for 34 commercial whole-body MRI systems based on the MRI quality recommendations and RT application; (c) Measure field homogeneity in five commercial MRI systems and one commercial MRI-Linac used in RT and compare the results with their B0 homogeneity specifications. Methods: Magnetic resonance imaging quality recommendations for spatial integrity, image blurring, fat saturation, and null banding in RT were developed based on the literature. Guaranteed (maximum) and typical B0 field homogeneity specifications for various diameter spherical volumes (DSVs) were provided by GE, Philips, Siemens, and Canon. For each system, the DSV that conforms to each MRI quality recommendation and anatomical RT application was estimated based on the manufacturer specifications. B0 field homogeneity was measured on six MRI systems including Philips (1.5 T), Siemens (1.5 and 3 T), and ViewRay MRI (0.35 T) systems using 24 and 35 cm DSV spherical phantoms. Two measurement techniques were used: (a) MRI using phase contrast field mapping to measure peak-to-peak (pk-pk), volume root mean square (VRMS), and standard deviation (SD); and (b) Magnetic resonance (MR) spectroscopy by acquiring a volumetric free induction decay (FID) to measure full width at half maximum (FWHM). The measurements were used to assess: (a) conformance with the manufacturer specifications; and (b) the relationship between the various field homogeneity measurement units. Measurements were made with and without gradient shimming (gradshim) or second-order active shimming. Multiple comparisons, analysis of variance (ANOVA), and Pearson correlations were performed to assess the dependence of pk-pk, VRMS, SD, and FWHM measurements of field homogeneity on shim volume, level of shim, and MRI system. Results: For a 40 cm DSV, the B0 homogeneity specifications ranged from 0.35 to 5 ppm (median = 0.75 ppm) VRMS for 1.5 T systems and 0.2 to 1.4 ppm (median = 0.5 ppm) VRMS for 3 T systems. The usable DSVs ranged from 16 to 49 cm (median = 35 cm) based on the image quality recommendations and the manufacturer specifications. There was general compliance between the six measured field homogeneities and manufacturer specifications although signal dephasing was observed in two systems at ' 35 cm DSV. The relationships between pk-pk, VRMS, SD, and FWHM varied based on MRI system, shim volume, and quality of shim. However, VRMS and SD measurements were highly correlated. Conclusions: The delineation of the diseased lesion from organs at risk is the main priority for RT. Therefore, field homogeneity performance for RT must minimize image blurring and image artifacts (null bands and signal dephasing) while optimizing spatial integrity and fat saturation. Based on the specifications and recommendations for field homogeneity, some MRI systems are not well suited to meet the strict demands of RT particularly for the large imaging volumes used in body MRI. VRMS and SD measurements of B0 field homogeneity tend to be more stable and sensitive to field inhomogeneities in RT applications than pk-pk and FWHM.
KW - B
KW - MRI
KW - field inhomogeneity
KW - measurement units
UR - http://www.scopus.com/inward/record.url?scp=85088146329&partnerID=8YFLogxK
U2 - 10.1002/mp.14306
DO - 10.1002/mp.14306
M3 - Article
C2 - 32472707
AN - SCOPUS:85088146329
SN - 0094-2405
VL - 47
SP - 4101
EP - 4114
JO - Medical physics
JF - Medical physics
IS - 9
ER -