TY - JOUR
T1 - Bradycardic onset of spiral wave re-entry
T2 - structural substrates.
AU - Zemlin, Christian W.
AU - Pertsov, Arkady M.
PY - 2007/11
Y1 - 2007/11
N2 - AIMS: The least understood aspect of re-entrant cardiac arrhythmias is how they start spontaneously. The known mechanisms for re-entry induction involve the application of premature electrical stimuli or rapid pacing, whereas in a clinical setting, re-entry often occurs at normal heart rates. Here, we propose a physiological mechanism of re-entry onset at normal and slow heart rates, which is based on structurally determined heterogeneities. METHODS AND RESULTS: Using a two-dimensional tissue model with Luo-Rudy II kinetics, we study electrical propagation in the presence of macroscopic coupling heterogeneities. We find that spiral wave re-entry occurs if steep and smooth coupling gradients are situated side by side, with the critical steepness depending on the frequency of stimulation. We demonstrate how bradycardia can unmask a slow endogenous pacemaker in a poorly coupled region, subsequently leading to spiral wave re-entry. CONCLUSION: In the presence of coupling heterogeneities, a single excitation coming from the less coupled region may induce spiral wave re-entry.
AB - AIMS: The least understood aspect of re-entrant cardiac arrhythmias is how they start spontaneously. The known mechanisms for re-entry induction involve the application of premature electrical stimuli or rapid pacing, whereas in a clinical setting, re-entry often occurs at normal heart rates. Here, we propose a physiological mechanism of re-entry onset at normal and slow heart rates, which is based on structurally determined heterogeneities. METHODS AND RESULTS: Using a two-dimensional tissue model with Luo-Rudy II kinetics, we study electrical propagation in the presence of macroscopic coupling heterogeneities. We find that spiral wave re-entry occurs if steep and smooth coupling gradients are situated side by side, with the critical steepness depending on the frequency of stimulation. We demonstrate how bradycardia can unmask a slow endogenous pacemaker in a poorly coupled region, subsequently leading to spiral wave re-entry. CONCLUSION: In the presence of coupling heterogeneities, a single excitation coming from the less coupled region may induce spiral wave re-entry.
UR - http://www.scopus.com/inward/record.url?scp=41249086404&partnerID=8YFLogxK
U2 - 10.1093/europace/eum205
DO - 10.1093/europace/eum205
M3 - Article
C2 - 17959694
AN - SCOPUS:41249086404
SN - 1099-5129
VL - 9 Suppl 6
SP - vi59-63
JO - Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology
JF - Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology
ER -