Bow-tie wobble artifact: Effect of source assembly motion on cone-beam CT

Dandan Zheng, John C. Ford, Jun Lu, Dimitrios Lazos, Geoffrey D. Hugo, Damodar Pokhrel, Lisha Zhang, Jeffrey F. Williamson

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Purpose: To investigate the cause of a bow-tie wobble artifact (BWA) discovered on Varian OBI CBCT images and to develop practical correction strategies.Method and Materials: The dependence of the BWA on phantom geometry, phantom position, specific system, and reconstruction algorithm was investigated. Simulations were conducted to study the dependence of the BWA on scatter and beam hardening corrections. Geometric calibration was performed to rule out other gantry-angle dependent mechanical non-idealities as BWA causes. Air scans were acquired with ball-bearing markers to study the motions of the x-ray head assembly as functions of gantry angle. Based on measurements, we developed hypothesis regarding the BWA cause. Simulations were performed to validate our hypothesis. Two correction strategies were implemented: a measurement-based method, which acquires gantry-dependent normalization projections (NPs); and a model-based method that involves numerically shifting the single-angle NP to compensate for the previously-measured bow-tie-filter (BTF) motion.Results: The BWA has a diameter of ∼15 cm, is centered at the isocenter, and is reproducible independent of phantom, position, system, reconstruction, and standard corrections, but only when the BTF is used. Measurements identified a 2D sinusoidal gantry-angle-dependent motion of the x-ray head assembly, and it was the BTF motion (3 mm amplitude projected onto the detector) resulting an intensity mismatch between the all-angle CBCT projections and a single-angle NP that caused the BWA. Both correction strategies were demonstrated effective.Conclusions: A geometric mismatch between the BTF modulation patterns on CBCT projections and on the NP causes the BWA. The BTF wobble requires additional degrees of freedom in CBCT geometric calibration to characterize.

Original languageEnglish
Pages (from-to)2508-2514
Number of pages7
JournalMedical physics
Volume38
Issue number5
DOIs
StatePublished - May 2011

Keywords

  • bow-tie-filter
  • cone-beam computed tomography
  • geometric calibration
  • image artifact
  • image-guidance radiation therapy

Fingerprint

Dive into the research topics of 'Bow-tie wobble artifact: Effect of source assembly motion on cone-beam CT'. Together they form a unique fingerprint.

Cite this