TY - JOUR
T1 - Bottom-up structural proteomics
T2 - cryoEM of protein complexes enriched from the cellular milieu
AU - Ho, Chi Min
AU - Li, Xiaorun
AU - Lai, Mason
AU - Terwilliger, Thomas C.
AU - Beck, Josh R.
AU - Wohlschlegel, James
AU - Goldberg, Daniel E.
AU - Fitzpatrick, Anthony W.P.
AU - Zhou, Z. Hong
N1 - Funding Information:
This research was supported in part by grants from National Institutes of Health (R01GM071940/AI094386/DE025567 to Z.H.Z. and K99/R00 HL133453 to J.R.B.). C.M.H. acknowledges funding from the Ruth L. Kirschstein National Research Service Award (AI007323). X.L. acknowledges funding from the China Scholarship Council (CSC). We thank the UCLA Proteome Research Center for assistance in mass spectrometry and acknowledge the use of resources in the Electron Imaging Center for Nanomachines supported by UCLA and grants from NIH (S10RR23057, S10OD018111 and U24GM116792) and NSF (DBI-1338135 and DMR-1548924).
Publisher Copyright:
© 2019, The Author(s), under exclusive licence to Springer Nature America, Inc.
PY - 2020/1/1
Y1 - 2020/1/1
N2 - X-ray crystallography often requires non-native constructs involving mutations or truncations, and is challenged by membrane proteins and large multicomponent complexes. We present here a bottom-up endogenous structural proteomics approach whereby near-atomic-resolution cryo electron microscopy (cryoEM) maps are reconstructed ab initio from unidentified protein complexes enriched directly from the endogenous cellular milieu, followed by identification and atomic modeling of the proteins. The proteins in each complex are identified using cryoID, a program we developed to identify proteins in ab initio cryoEM maps. As a proof of principle, we applied this approach to the malaria-causing parasite Plasmodium falciparum, an organism that has resisted conventional structural-biology approaches, to obtain atomic models of multiple protein complexes implicated in intraerythrocytic survival of the parasite. Our approach is broadly applicable for determining structures of undiscovered protein complexes enriched directly from endogenous sources.
AB - X-ray crystallography often requires non-native constructs involving mutations or truncations, and is challenged by membrane proteins and large multicomponent complexes. We present here a bottom-up endogenous structural proteomics approach whereby near-atomic-resolution cryo electron microscopy (cryoEM) maps are reconstructed ab initio from unidentified protein complexes enriched directly from the endogenous cellular milieu, followed by identification and atomic modeling of the proteins. The proteins in each complex are identified using cryoID, a program we developed to identify proteins in ab initio cryoEM maps. As a proof of principle, we applied this approach to the malaria-causing parasite Plasmodium falciparum, an organism that has resisted conventional structural-biology approaches, to obtain atomic models of multiple protein complexes implicated in intraerythrocytic survival of the parasite. Our approach is broadly applicable for determining structures of undiscovered protein complexes enriched directly from endogenous sources.
UR - http://www.scopus.com/inward/record.url?scp=85075437670&partnerID=8YFLogxK
U2 - 10.1038/s41592-019-0637-y
DO - 10.1038/s41592-019-0637-y
M3 - Article
C2 - 31768063
AN - SCOPUS:85075437670
VL - 17
SP - 79
EP - 85
JO - Nature Methods
JF - Nature Methods
SN - 1548-7091
IS - 1
ER -