Block coordinate regularization by denoising

Yu Sun, Jiaming Liu, Ulugbek S. Kamilov

Research output: Contribution to journalConference articlepeer-review

52 Scopus citations

Abstract

We consider the problem of estimating a vector from its noisy measurements using a prior specified only through a denoising function. Recent work on plug- and-play priors (PnP) and regularization-by-denoising (RED) has shown the state-of-the-art performance of estimators under such priors in a range of imaging tasks. In this work, we develop a new block coordinate RED algorithm that decomposes a large-scale estimation problem into a sequence of updates over a small subset of the unknown variables. We theoretically analyze the convergence of the algorithm and discuss its relationship to the traditional proximal optimization. Our analysis complements and extends recent theoretical results for RED-based estimation methods. We numerically validate our method using several denoiser priors, including those based on convolutional neural network (CNN) denoisers.

Original languageEnglish
JournalAdvances in Neural Information Processing Systems
Volume32
StatePublished - 2019
Event33rd Annual Conference on Neural Information Processing Systems, NeurIPS 2019 - Vancouver, Canada
Duration: Dec 8 2019Dec 14 2019

Fingerprint

Dive into the research topics of 'Block coordinate regularization by denoising'. Together they form a unique fingerprint.

Cite this