Abstract
Orthophosphate (P1) can both stimulate and inhibit the (Na, K)-pump in red cells. At concentrations below 0.5 mmol/1 cells, Pi stimulated the pump, but at higher concentrations Pi was inhibitory. The stimulation was demonstrated in intact cells by preincubation with inosine (which leads to a reduction in cellular Pi concentration), and then by incubating cells in media with various Pi concentrations (which relieved the inhibition caused by inosine). In inosine-treated cells there was an inverse relationship between the hematocrit during measurement of the fluxes and inhibition of the (Na, K)-pump; this was also a reflection of cellular Pi, which was lower in inosine-treated cels at low hematocrit. The stimulation of the (Na, K)-pump by Pi below 0.5 mmol/l cells was an indirect effect due to synthesis of ATP by membrane-bound glycolytic enzymes, which required the appropriate substrates (in addition to Pi). This was shown by studies on inside-out vesicles made from red cell membranes. In the absence of the other substrates, Pi was inhibitory to Na transport in the vesicles. Above 0.5 mmol/l cells Pi was inhibitory to Na transport, both in inside-out vesicles and in intact cells. The mechanism of inhibition, probably a direct effect on the (Na, K)-pump, was not determined, though product inhibition seemed likely. The dependence on Pi of abnormal modes of Na transport by the pump (uncoupled Na efflux and Na/Na exchange) at low Pi concentrations was less than the dependence of normal Na/K exchange. This was attributed to a requirement by the abnormal modes of a lower rate of synthesis of ATP or a lower ATP concentration.
Original language | English |
---|---|
Pages (from-to) | 63-70 |
Number of pages | 8 |
Journal | BBA - Biomembranes |
Volume | 648 |
Issue number | 1 |
DOIs | |
State | Published - Oct 20 1981 |
Keywords
- (Human red cell)
- (Na, K)-pump
- ATP
- Active transport
- Orthophosphate