TY - GEN
T1 - Biophysical modeling of alpha rhythms during halothane-induced unconsciousness
AU - Vijayan, Sujith
AU - Ching, Shinung
AU - Purdon, Patrick L.
AU - Brown, Emery N.
AU - Kopell, Nancy J.
PY - 2013
Y1 - 2013
N2 - During the induction of general anesthesia there is a shift in power from the posterior regions of the brain to the frontal cortices; this shift in power is called anteriorization. For many anesthetics, a prominent feature of anteriorization is a shift specifically in the alpha band (8-13 Hz) from posterior to frontal cortices. Here we present a biophysical computational model that describes thalamocortical circuit-level dynamics underlying anteriorization of the alpha rhythm in the case of halothane. Halothane potentiates GABAA and increases potassium leak conductances. According to our model, an increase in potassium leak conductances hyperpolarizes and silences the high-threshold thalamocortical (HTC) cells, a specialized subset of thalamocortical cells that fire at the alpha frequency at relatively depolarized membrane potentials (>-60 mV) and are thought to be the generators of quiet awake occipital alpha. At the same time the potentiation of GABAA imposes an alpha time scale on both the cortical and the thalamic component of the frontal portion of our model. The alpha activity in the frontal component is further strengthened by reciprocal thalamocortical feedback. Thus, we argue that the dual molecular targets of halothane induce the anteriorization of the alpha rhythm by increasing potassium leak conductances, which abolishes occipital alpha, and by potentiating GABAA, which induces frontal alpha. These results provide a computational modeling formulation for studying highly detailed biophysical mechanisms of anesthetic action in silico.
AB - During the induction of general anesthesia there is a shift in power from the posterior regions of the brain to the frontal cortices; this shift in power is called anteriorization. For many anesthetics, a prominent feature of anteriorization is a shift specifically in the alpha band (8-13 Hz) from posterior to frontal cortices. Here we present a biophysical computational model that describes thalamocortical circuit-level dynamics underlying anteriorization of the alpha rhythm in the case of halothane. Halothane potentiates GABAA and increases potassium leak conductances. According to our model, an increase in potassium leak conductances hyperpolarizes and silences the high-threshold thalamocortical (HTC) cells, a specialized subset of thalamocortical cells that fire at the alpha frequency at relatively depolarized membrane potentials (>-60 mV) and are thought to be the generators of quiet awake occipital alpha. At the same time the potentiation of GABAA imposes an alpha time scale on both the cortical and the thalamic component of the frontal portion of our model. The alpha activity in the frontal component is further strengthened by reciprocal thalamocortical feedback. Thus, we argue that the dual molecular targets of halothane induce the anteriorization of the alpha rhythm by increasing potassium leak conductances, which abolishes occipital alpha, and by potentiating GABAA, which induces frontal alpha. These results provide a computational modeling formulation for studying highly detailed biophysical mechanisms of anesthetic action in silico.
UR - http://www.scopus.com/inward/record.url?scp=84897713940&partnerID=8YFLogxK
U2 - 10.1109/NER.2013.6696130
DO - 10.1109/NER.2013.6696130
M3 - Conference contribution
AN - SCOPUS:84897713940
SN - 9781467319690
T3 - International IEEE/EMBS Conference on Neural Engineering, NER
SP - 1104
EP - 1107
BT - 2013 6th International IEEE EMBS Conference on Neural Engineering, NER 2013
T2 - 2013 6th International IEEE EMBS Conference on Neural Engineering, NER 2013
Y2 - 6 November 2013 through 8 November 2013
ER -