Binding of the Radioligand SIL23 to α-Synuclein Fibrils in Parkinson Disease Brain Tissue Establishes Feasibility and Screening Approaches for Developing a Parkinson Disease Imaging Agent

Devika P. Bagchi, Lihai Yu, Joel S. Perlmutter, Jinbin Xu, Robert H. Mach, Zhude Tu, Paul T. Kotzbauer

Research output: Contribution to journalArticlepeer-review

96 Scopus citations

Abstract

Accumulation of α-synuclein (α-syn) fibrils in Lewy bodies and Lewy neurites is the pathological hallmark of Parkinson disease (PD). Ligands that bind α-syn fibrils could be utilized as imaging agents to improve the diagnosis of PD and to monitor disease progression. However, ligands for α-syn fibrils in PD brain tissue have not been previously identified and the feasibility of quantifying α-syn fibrils in brain tissue is unknown. We report the identification of the 125I-labeled α-syn radioligand SIL23. [125I]SIL23 binds α-syn fibrils in postmortem brain tissue from PD patients as well as an α-syn transgenic mouse model for PD. The density of SIL23 binding sites correlates with the level of fibrillar α-syn in PD brain tissue, and [125I]SIL23 binding site densities in brain tissue are sufficiently high to enable in vivo imaging with high affinity ligands. These results identify a SIL23 binding site on α-syn fibrils that is a feasible target for development of an α-syn imaging agent. The affinity of SIL23 for α-syn and its selectivity for α-syn versus Aβ and tau fibrils is not optimal for imaging fibrillar α-syn in vivo, but we show that SIL23 competitive binding assays can be used to screen additional ligands for suitable affinity and selectivity, which will accelerate the development of an α-syn imaging agent for PD.

Original languageEnglish
Article numbere55031
JournalPloS one
Volume8
Issue number2
DOIs
StatePublished - Feb 6 2013

Fingerprint

Dive into the research topics of 'Binding of the Radioligand SIL23 to α-Synuclein Fibrils in Parkinson Disease Brain Tissue Establishes Feasibility and Screening Approaches for Developing a Parkinson Disease Imaging Agent'. Together they form a unique fingerprint.

Cite this