TY - JOUR
T1 - Binding of host cell surface protein disulfide isomerase by anaplasma phagocytophilum Asp14 enables pathogen infection
AU - Green, Ryan S.
AU - Naimi, Waheeda A.
AU - Oliver, Lee D.
AU - O’bier, Nathaniel
AU - Cho, Jaehyung
AU - Conrad, Daniel H.
AU - Martin, Rebecca K.
AU - Marconi, Richard T.
AU - Carlyon, Jason A.
N1 - Publisher Copyright:
© 2020 Green et al.
PY - 2020/1/1
Y1 - 2020/1/1
N2 - Diverse intracellular pathogens rely on eukaryotic cell surface disulfide reductases to invade host cells. Pharmacologic inhibition of these enzymes is cyto-toxic, making it impractical for treatment. Identifying and mechanistically dissecting microbial proteins that co-opt surface reductases could reveal novel targets for disrupting this common infection strategy. Anaplasma phagocytophilum invades neutrophils by an incompletely defined mechanism to cause the potentially fatal disease granulocytic anaplasmosis. The bacterium’s adhesin, Asp14, contributes to invasion by virtue of its C terminus engaging an unknown receptor. Yeast-two hybrid analysis identified protein disulfide isomerase (PDI) as an Asp14 binding partner. Coimmuno-precipitation confirmed the interaction and validated it to be Asp14 C terminus dependent. PDI knockdown and antibody-mediated inhibition of PDI reductase activity impaired A. phagocytophilum infection of but not binding to host cells. Infection during PDI inhibition was rescued when the bacterial but not host cell surface disulfide bonds were chemically reduced with tris(2-carboxyethyl)phosphine-HCl (TCEP). TCEP also restored bacterial infectivity in the presence of an Asp14 C terminus blocking antibody that otherwise inhibits infection. A. phagocytophilum failed to productively infect myeloid-specific-PDI conditional-knockout mice, marking the first demonstration of in vivo microbial dependency on PDI for infection. Mutational analyses identified the Asp14 C-terminal residues that are critical for binding PDI. Thus, Asp14 binds and brings PDI proximal to A. phagocytophilum surface disulfide bonds that it reduces, which enables cellular and in vivo infection. IMPORTANCE Anaplasma phagocytophilum infects neutrophils to cause granulocytic anaplasmosis, an emerging potentially fatal disease and the second-most common tick-borne illness in the United States. Treatment options are limited, and no vaccine exists. Due to the bacterium’s obligatory intracellular lifestyle, A. phagocytophilum survival and pathogenesis are predicated on its ability to enter host cells. Understanding its invasion mechanism will yield new targets for preventing bacterial entry and, hence, disease. We report a novel entry pathway in which the A. phagocytophilum outer membrane protein Asp14 binds host cell surface protein disulfide isomerase via specific C-terminal residues to promote reduction of bacterial surface disulfide bonds, which is critical for cellular invasion and productive infection in vivo. Targeting the Asp14 C terminus could be used to prevent/treat granulocytic anaplasmosis. Our findings have broad implications, as a thematically similar approach could be applied to block infection by other intracellular microbes that exploit cell surface reductases.
AB - Diverse intracellular pathogens rely on eukaryotic cell surface disulfide reductases to invade host cells. Pharmacologic inhibition of these enzymes is cyto-toxic, making it impractical for treatment. Identifying and mechanistically dissecting microbial proteins that co-opt surface reductases could reveal novel targets for disrupting this common infection strategy. Anaplasma phagocytophilum invades neutrophils by an incompletely defined mechanism to cause the potentially fatal disease granulocytic anaplasmosis. The bacterium’s adhesin, Asp14, contributes to invasion by virtue of its C terminus engaging an unknown receptor. Yeast-two hybrid analysis identified protein disulfide isomerase (PDI) as an Asp14 binding partner. Coimmuno-precipitation confirmed the interaction and validated it to be Asp14 C terminus dependent. PDI knockdown and antibody-mediated inhibition of PDI reductase activity impaired A. phagocytophilum infection of but not binding to host cells. Infection during PDI inhibition was rescued when the bacterial but not host cell surface disulfide bonds were chemically reduced with tris(2-carboxyethyl)phosphine-HCl (TCEP). TCEP also restored bacterial infectivity in the presence of an Asp14 C terminus blocking antibody that otherwise inhibits infection. A. phagocytophilum failed to productively infect myeloid-specific-PDI conditional-knockout mice, marking the first demonstration of in vivo microbial dependency on PDI for infection. Mutational analyses identified the Asp14 C-terminal residues that are critical for binding PDI. Thus, Asp14 binds and brings PDI proximal to A. phagocytophilum surface disulfide bonds that it reduces, which enables cellular and in vivo infection. IMPORTANCE Anaplasma phagocytophilum infects neutrophils to cause granulocytic anaplasmosis, an emerging potentially fatal disease and the second-most common tick-borne illness in the United States. Treatment options are limited, and no vaccine exists. Due to the bacterium’s obligatory intracellular lifestyle, A. phagocytophilum survival and pathogenesis are predicated on its ability to enter host cells. Understanding its invasion mechanism will yield new targets for preventing bacterial entry and, hence, disease. We report a novel entry pathway in which the A. phagocytophilum outer membrane protein Asp14 binds host cell surface protein disulfide isomerase via specific C-terminal residues to promote reduction of bacterial surface disulfide bonds, which is critical for cellular invasion and productive infection in vivo. Targeting the Asp14 C terminus could be used to prevent/treat granulocytic anaplasmosis. Our findings have broad implications, as a thematically similar approach could be applied to block infection by other intracellular microbes that exploit cell surface reductases.
KW - Adhesin
KW - Anaplasma phagocytophilum
KW - Host-pathogen interactions
KW - Obligate intracellular bacteria
KW - Protein disulfide isomerase
UR - http://www.scopus.com/inward/record.url?scp=85078687748&partnerID=8YFLogxK
U2 - 10.1128/mBio.03141-19
DO - 10.1128/mBio.03141-19
M3 - Article
C2 - 31992623
AN - SCOPUS:85078687748
SN - 2161-2129
VL - 11
JO - mBio
JF - mBio
IS - 1
M1 - e03141-19
ER -