Binary Interval Search: A scalable algorithm for counting interval intersections

Ryan M. Layer, Kevin Skadron, Gabriel Robins, Ira M. Hall, Aaron R. Quinlan

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

Motivation: The comparison of diverse genomic datasets is fundamental to understand genome biology. Researchers must explore many large datasets of genome intervals (e.g. genes, sequence alignments) to place their experimental results in a broader context and to make new discoveries. Relationships between genomic datasets are typically measured by identifying intervals that intersect, that is, they overlap and thus share a common genome interval. Given the continued advances in DNA sequencing technologies, efficient methods for measuring statistically significant relationships between many sets of genomic features are crucial for future discovery.Results: We introduce the Binary Interval Search (BITS) algorithm, a novel and scalable approach to interval set intersection. We demonstrate that BITS outperforms existing methods at counting interval intersections. Moreover, we show that BITS is intrinsically suited to parallel computing architectures, such as graphics processing units by illustrating its utility for efficient Monte Carlo simulations measuring the significance of relationships between sets of genomic intervals.

Original languageEnglish
Pages (from-to)1-7
Number of pages7
JournalBioinformatics
Volume29
Issue number1
DOIs
StatePublished - Jan 2013

Fingerprint

Dive into the research topics of 'Binary Interval Search: A scalable algorithm for counting interval intersections'. Together they form a unique fingerprint.

Cite this