TY - JOUR
T1 - BHLHE40 Regulates the T-Cell Effector Function Required for Tumor Microenvironment Remodeling and Immune Checkpoint Therapy Efficacy
AU - Salmon, Avery J.
AU - Shavkunov, Alexander S.
AU - Miao, Qi
AU - Jarjour, Nicholas N.
AU - Keshari, Sunita
AU - Esaulova, Ekaterina
AU - Williams, Charmelle D.
AU - Ward, Jeffrey P.
AU - Highsmith, Anna M.
AU - Pineda, Josué E.
AU - Taneja, Reshma
AU - Chen, Ken
AU - Edelson, Brian T.
AU - Gubin, Matthew M.
N1 - Funding Information:
N.N. Jarjour reports grants from Damon Runyon Cancer Research Foundation outside the submitted work. J.P. Ward reports grants from NCI during the conduct of the study; personal fees and other support from Novocure; other support from Pfizer, Genmab A/S, AstraZeneca, and other support from GlaxoSmithKline/GSK outside the submitted work. B.T. Edelson reports grants from NIH/NIAID during the conduct of the study. K. Chen reports grants from the NCI during the conduct of this study. M.M. Gubin reports grants from Cancer Prevention and Research Institute of Texas (CPRIT), grants from Parker Institute for Cancer Immunotherapy (PICI), and grants from The University of Texas MD Anderson Cancer Center Support Grant (CCSG) New Faculty Award supported by the NIH/NCI (P30CA016672) during the conduct of the study; and a personal honorarium of $1000.00 USD per year from Springer Nature Ltd for his role as an Associate Editor for the journal Nature Precision Oncology. No disclosures were reported by the other authors.
Funding Information:
M.M. Gubin is a Cancer Prevention and Research Institute of Texas (CPRIT) Scholar in Cancer Research. This work was supported by CPRIT (Recruitment of First-Time Tenure-Track Faculty Members; RR190017), The Parker Institute for Cancer Immunotherapy Bridge Scholar Award, University of Texas (UT) Rising Stars Award, and the University of Texas MD Anderson Cancer Center Support Grant (CCSG) New Faculty Award supported by the NIH/NCI (P30CA016672 to M.M. Gubin; NIH R01AI113118 and R01AI132653 to B.T. Edelson; and NIH/NCI U01CA247760 to K. Chen). J.P. Ward is supported by the NCI/NIH Paul Calabresi Career Development Award in Clinical Oncology (K12CA167540). N.N. Jarjour is a Damon Runyon Fellow supported by the Damon Runyon Cancer Research Foundation (DRG-2427-21). S. Keshari is a Balzan Postdoctoral Research Fellow supported by The International Balzan Prize Foundation. The University of Texas MD Anderson Advanced Cytometry & Sorting Facility at South Campus (ACSF) is partially funded by the NCI Cancer Center Support Grant P30CA16672. scRNAseq was performed by The University of Texas MD Anderson Cancer Center Advanced Technology Genomics Core (ATGC) Facility funded by an NCI grant [CA016672 (ATGC)] and an NIH 1S10OD024977-01 award to the ATGC. Aspects of studies were performed with assistance by the Washington University School of Medicine Immunomonitoring Laboratory (IML), which is supported by the Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs and the Alvin J. Siteman Comprehensive Cancer Center that, in turn, is supported by NCI/NIH Cancer Center Support Grant under award number P30CA91842. We would like to thank David Pollock at The University of Texas MD Anderson Cancer Center Advanced Technology Genomics Core (ATGC) Facility for assistance with scRNAseq. We would like to thank the Baylor College of Medicine MHC Tetramer Core and thank the core director, X. Lily Wang for production of MHC tetramers used in this study. The authors thank all members of the Edelson and Gubin lab for helpful discussions and technical support. We would also like to thank Stephanie Watowich (The University of Texas MD Anderson Cancer Center), Swetha Anandhan (The University of Texas MD Anderson Cancer Center), and James Mancuso (The University of Texas MD Anderson Cancer Center) for critiques and helpful discussions.
Publisher Copyright:
© 2022 The Authors
PY - 2022/5
Y1 - 2022/5
N2 - Immune checkpoint therapy (ICT) using antibody blockade of programmed cell death protein 1 (PD-1) or cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) can provoke T cell-dependent antitumor activity that generates durable clinical responses in some patients. The epigenetic and transcriptional features that T cells require for efficacious ICT remain to be fully elucidated. Herein, we report that anti-PD-1 and anti-CTLA-4 ICT induce upregulation of the transcription factor BHLHE40 in tumor antigen-specific CD8+ and CD4+ T cells and that T cells require BHLHE40 for effective ICT in mice bearing immune-edited tumors. Single-cell RNA sequencing of intratumoral immune cells in BHLHE40-deficient mice revealed differential ICT-induced immune cell remodeling. The BHLHE40-dependent gene expression changes indicated dysregulated metabolism, NF-κB signaling, and IFNγ response within certain subpopulations of CD4+ and CD8+ T cells. Intratumoral CD4+ and CD8+ T cells from BHLHE40-deficient mice exhibited higher expression of the inhibitory receptor gene Tigit and displayed alterations in expression of genes encoding chemokines/chemokine receptors and granzyme family members. Mice lacking BHLHE40 had reduced ICT-driven IFNγ production by CD4+ and CD8+ T cells and defects in ICT-induced remodeling of macrophages from a CX3CR1+CD206+ subpopulation to an iNOS+ subpopulation that is typically observed during effective ICT. Although both anti-PD-1 and anti-CTLA-4 ICT in BHLHE40-deficient mice led to the same outcome-tumor outgrowth-several BHLHE40-dependent alterations were specific to the ICT that was used. Our results reveal a crucial role for BHLHE40 in effective ICT and suggest that BHLHE40 may be a predictive or prognostic biomarker for ICT efficacy and a potential therapeutic target.
AB - Immune checkpoint therapy (ICT) using antibody blockade of programmed cell death protein 1 (PD-1) or cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) can provoke T cell-dependent antitumor activity that generates durable clinical responses in some patients. The epigenetic and transcriptional features that T cells require for efficacious ICT remain to be fully elucidated. Herein, we report that anti-PD-1 and anti-CTLA-4 ICT induce upregulation of the transcription factor BHLHE40 in tumor antigen-specific CD8+ and CD4+ T cells and that T cells require BHLHE40 for effective ICT in mice bearing immune-edited tumors. Single-cell RNA sequencing of intratumoral immune cells in BHLHE40-deficient mice revealed differential ICT-induced immune cell remodeling. The BHLHE40-dependent gene expression changes indicated dysregulated metabolism, NF-κB signaling, and IFNγ response within certain subpopulations of CD4+ and CD8+ T cells. Intratumoral CD4+ and CD8+ T cells from BHLHE40-deficient mice exhibited higher expression of the inhibitory receptor gene Tigit and displayed alterations in expression of genes encoding chemokines/chemokine receptors and granzyme family members. Mice lacking BHLHE40 had reduced ICT-driven IFNγ production by CD4+ and CD8+ T cells and defects in ICT-induced remodeling of macrophages from a CX3CR1+CD206+ subpopulation to an iNOS+ subpopulation that is typically observed during effective ICT. Although both anti-PD-1 and anti-CTLA-4 ICT in BHLHE40-deficient mice led to the same outcome-tumor outgrowth-several BHLHE40-dependent alterations were specific to the ICT that was used. Our results reveal a crucial role for BHLHE40 in effective ICT and suggest that BHLHE40 may be a predictive or prognostic biomarker for ICT efficacy and a potential therapeutic target.
UR - http://www.scopus.com/inward/record.url?scp=85129996880&partnerID=8YFLogxK
U2 - 10.1158/2326-6066.CIR-21-0129
DO - 10.1158/2326-6066.CIR-21-0129
M3 - Article
C2 - 35181783
AN - SCOPUS:85129996880
SN - 2326-6066
VL - 10
SP - 597
EP - 611
JO - Cancer immunology research
JF - Cancer immunology research
IS - 5
ER -