TY - GEN
T1 - Beyond link prediction
T2 - 32nd AAAI Conference on Artificial Intelligence, AAAI 2018
AU - Zhang, Muhan
AU - Cui, Zhicheng
AU - Jiang, Shali
AU - Chen, Yixin
N1 - Publisher Copyright:
Copyright © 2018, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2018
Y1 - 2018
N2 - This paper addresses the hyperlink prediction problem in hypernetworks. Different from the traditional link prediction problem where only pairwise relations are considered as links, our task here is to predict the linkage of multiple nodes, i.e., hyperlink. Each hyperlink is a set of an arbitrary number of nodes which together form a multiway relationship. Hyperlink prediction is challenging - since the cardinality of a hyperlink is variable, existing classifiers based on a fixed number of input features become infeasible. Heuristic methods, such as the common neighbors and Katz index, do not work for hyperlink prediction, since they are restricted to pairwise similarities. In this paper, we formally define the hyperlink prediction problem, and propose a new algorithm called Coordinated Matrix Minimization (CMM), which alternately performs nonnegative matrix factorization and least square matching in the vertex adjacency space of the hypernetwork, in order to infer a subset of candidate hyperlinks that are most suitable to fill the training hypernetwork. We evaluate CMM on two novel tasks: predicting recipes of Chinese food, and finding missing reactions of metabolic networks. Experimental results demonstrate the superior performance of our method over many seemingly promising baselines.
AB - This paper addresses the hyperlink prediction problem in hypernetworks. Different from the traditional link prediction problem where only pairwise relations are considered as links, our task here is to predict the linkage of multiple nodes, i.e., hyperlink. Each hyperlink is a set of an arbitrary number of nodes which together form a multiway relationship. Hyperlink prediction is challenging - since the cardinality of a hyperlink is variable, existing classifiers based on a fixed number of input features become infeasible. Heuristic methods, such as the common neighbors and Katz index, do not work for hyperlink prediction, since they are restricted to pairwise similarities. In this paper, we formally define the hyperlink prediction problem, and propose a new algorithm called Coordinated Matrix Minimization (CMM), which alternately performs nonnegative matrix factorization and least square matching in the vertex adjacency space of the hypernetwork, in order to infer a subset of candidate hyperlinks that are most suitable to fill the training hypernetwork. We evaluate CMM on two novel tasks: predicting recipes of Chinese food, and finding missing reactions of metabolic networks. Experimental results demonstrate the superior performance of our method over many seemingly promising baselines.
UR - http://www.scopus.com/inward/record.url?scp=85060468788&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85060468788
T3 - 32nd AAAI Conference on Artificial Intelligence, AAAI 2018
SP - 4430
EP - 4437
BT - 32nd AAAI Conference on Artificial Intelligence, AAAI 2018
PB - AAAI press
Y2 - 2 February 2018 through 7 February 2018
ER -