Beyond link prediction: Predicting hyperlinks in adjacency space

Muhan Zhang, Zhicheng Cui, Shali Jiang, Yixin Chen

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

88 Scopus citations

Abstract

This paper addresses the hyperlink prediction problem in hypernetworks. Different from the traditional link prediction problem where only pairwise relations are considered as links, our task here is to predict the linkage of multiple nodes, i.e., hyperlink. Each hyperlink is a set of an arbitrary number of nodes which together form a multiway relationship. Hyperlink prediction is challenging - since the cardinality of a hyperlink is variable, existing classifiers based on a fixed number of input features become infeasible. Heuristic methods, such as the common neighbors and Katz index, do not work for hyperlink prediction, since they are restricted to pairwise similarities. In this paper, we formally define the hyperlink prediction problem, and propose a new algorithm called Coordinated Matrix Minimization (CMM), which alternately performs nonnegative matrix factorization and least square matching in the vertex adjacency space of the hypernetwork, in order to infer a subset of candidate hyperlinks that are most suitable to fill the training hypernetwork. We evaluate CMM on two novel tasks: predicting recipes of Chinese food, and finding missing reactions of metabolic networks. Experimental results demonstrate the superior performance of our method over many seemingly promising baselines.

Original languageEnglish
Title of host publication32nd AAAI Conference on Artificial Intelligence, AAAI 2018
PublisherAAAI press
Pages4430-4437
Number of pages8
ISBN (Electronic)9781577358008
StatePublished - 2018
Event32nd AAAI Conference on Artificial Intelligence, AAAI 2018 - New Orleans, United States
Duration: Feb 2 2018Feb 7 2018

Publication series

Name32nd AAAI Conference on Artificial Intelligence, AAAI 2018

Conference

Conference32nd AAAI Conference on Artificial Intelligence, AAAI 2018
Country/TerritoryUnited States
CityNew Orleans
Period02/2/1802/7/18

Fingerprint

Dive into the research topics of 'Beyond link prediction: Predicting hyperlinks in adjacency space'. Together they form a unique fingerprint.

Cite this