TY - GEN
T1 - Bayesian optimal active search and surveying
AU - Garnett, Roman
AU - Krishnamurthy, Yamuna
AU - Xiong, Xuehan
AU - Schneider, Jeff
AU - Mann, Richard
PY - 2012
Y1 - 2012
N2 - We consider two active binary-classification problems with atypical objectives. In the first, active search, our goal is to actively uncover as many members of a given class as possible. In the second, active surveying, our goal is to actively query points to ultimately predict the proportion of a given class. Numerous real-world problems can be framed in these terms, and in either case typical model-based concerns such as generalization error are only of secondary importance. We approach these problems via Bayesian decision theory; after choosing natural utility functions, we derive the optimal policies. We provide three contributions. In addition to introducing the active surveying problem, we extend previous work on active search in two ways. First, we prove a novel theoretical result, that less-myopic approximations to the optimal policy can outperform more-myopic approximations by any arbitrary degree. We then derive bounds that for certain models allow us to reduce (in practice dramatically) the exponential search space required by a naïve implementation of the optimal policy, enabling further lookahead while still ensuring that optimal decisions are always made.
AB - We consider two active binary-classification problems with atypical objectives. In the first, active search, our goal is to actively uncover as many members of a given class as possible. In the second, active surveying, our goal is to actively query points to ultimately predict the proportion of a given class. Numerous real-world problems can be framed in these terms, and in either case typical model-based concerns such as generalization error are only of secondary importance. We approach these problems via Bayesian decision theory; after choosing natural utility functions, we derive the optimal policies. We provide three contributions. In addition to introducing the active surveying problem, we extend previous work on active search in two ways. First, we prove a novel theoretical result, that less-myopic approximations to the optimal policy can outperform more-myopic approximations by any arbitrary degree. We then derive bounds that for certain models allow us to reduce (in practice dramatically) the exponential search space required by a naïve implementation of the optimal policy, enabling further lookahead while still ensuring that optimal decisions are always made.
UR - http://www.scopus.com/inward/record.url?scp=84867117792&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84867117792
SN - 9781450312851
T3 - Proceedings of the 29th International Conference on Machine Learning, ICML 2012
SP - 1239
EP - 1246
BT - Proceedings of the 29th International Conference on Machine Learning, ICML 2012
T2 - 29th International Conference on Machine Learning, ICML 2012
Y2 - 26 June 2012 through 1 July 2012
ER -