TY - JOUR
T1 - BAX contributes to apoptotic-like death following neonatal hypoxia-ischemia
T2 - Evidence for distinct apoptosis pathways
AU - Gibson, Margaret E.
AU - Byung, Hee Han
AU - Choi, Junjeong
AU - Knudson, C. Michael
AU - Korsmeyer, Stanley J.
AU - Parsadanian, Maia
AU - Holtzman, David M.
PY - 2001
Y1 - 2001
N2 - Background: Hypoxic-ischemic (H-I) injury to the neonatal brain has been shown to result in rapid cell death with features of acute excitotoxicity/necrosis as well as prominent delayed cell death with features of apoptosis such as marked caspase-3 activation. BAX, a pro-apoptotic molecule, has been shown to be required for apoptotic neuronal cell death during normal development but the contribution of endogenous BAX in cell death pathways following H-I injury to the developing or adult brain has not been studied. Materials and Methods: Bax +/+, +/-, and -/- mice at post-natal day 7 were subjected to unilateral carotid ligation followed by exposure to 45 minutes of 8% oxygen. At different timepoints following H-I, brain tissue was studied by conventional histology, immunohistochemistry, immunofluorescence, Western blotting, and enzymatic assay to determine the extent and type of cell injury as well as the amount of caspase activation. Results: We found that bax -/- mice had significantly less (38%) hippocampal tissue loss than mice expressing bax. Some of the remaining cell death in bax -/- mice, however, still had features of apoptosis including evidence of nuclear shrinkage and caspase-3 activation. Though bax -/- mice had significantly decreased caspase-3 activation as compared to bax expressing mice following H-I, the density of cells with activated caspase-8 in the CA3 region of the hippocampus did not differ between bax +/- and bax -/- mice. Conclusions: These findings demonstrate that endogenous BAX plays a role in regulating cell death in the central nervous system (CNS) following neonatal H-I, a model of cerebral palsy. In addition, while BAX appears to modulate the caspase-3 activation following neonatal H-I, caspase-8 which is linked to death receptor activation, may contribute to apoptotic-like neuronal death in a BAX-independent manner.
AB - Background: Hypoxic-ischemic (H-I) injury to the neonatal brain has been shown to result in rapid cell death with features of acute excitotoxicity/necrosis as well as prominent delayed cell death with features of apoptosis such as marked caspase-3 activation. BAX, a pro-apoptotic molecule, has been shown to be required for apoptotic neuronal cell death during normal development but the contribution of endogenous BAX in cell death pathways following H-I injury to the developing or adult brain has not been studied. Materials and Methods: Bax +/+, +/-, and -/- mice at post-natal day 7 were subjected to unilateral carotid ligation followed by exposure to 45 minutes of 8% oxygen. At different timepoints following H-I, brain tissue was studied by conventional histology, immunohistochemistry, immunofluorescence, Western blotting, and enzymatic assay to determine the extent and type of cell injury as well as the amount of caspase activation. Results: We found that bax -/- mice had significantly less (38%) hippocampal tissue loss than mice expressing bax. Some of the remaining cell death in bax -/- mice, however, still had features of apoptosis including evidence of nuclear shrinkage and caspase-3 activation. Though bax -/- mice had significantly decreased caspase-3 activation as compared to bax expressing mice following H-I, the density of cells with activated caspase-8 in the CA3 region of the hippocampus did not differ between bax +/- and bax -/- mice. Conclusions: These findings demonstrate that endogenous BAX plays a role in regulating cell death in the central nervous system (CNS) following neonatal H-I, a model of cerebral palsy. In addition, while BAX appears to modulate the caspase-3 activation following neonatal H-I, caspase-8 which is linked to death receptor activation, may contribute to apoptotic-like neuronal death in a BAX-independent manner.
UR - http://www.scopus.com/inward/record.url?scp=0035718736&partnerID=8YFLogxK
U2 - 10.1007/bf03401871
DO - 10.1007/bf03401871
M3 - Article
C2 - 11778654
AN - SCOPUS:0035718736
SN - 1076-1551
VL - 7
SP - 644
EP - 655
JO - Molecular Medicine
JF - Molecular Medicine
IS - 9
ER -