Abstract
Purpose A novel technique for highly sensitive detection of multiresonant fluorine imaging agents was designed and tested with the use of dual-frequency 19F/1H ultrashort echo times (UTE) sampled with a balanced steady-state free precession (SSFP) pulse sequence and three-dimensional (3D) radial readout. Methods Feasibility of 3D radial balanced UTE-SSFP imaging was demonstrated for a phantom comprising liquid perfluorooctyl bromide (PFOB). Sensitivity of the pulse sequence was measured and compared with other sequences imaging the PFOB (CF2)6 line group including UTE radial gradient-echo (GRE) at α = 30°, as well as Cartesian GRE, balanced SSFP, and fast spin-echo (FSE). The PFOB CF3 peak was also sampled with FSE. Results The proposed balanced UTE-SSFP technique exhibited a relative detection sensitivity of 51 μmolPFOB-1min-1/2 (α = 30°), at least twice that of other sequence types with either 3D radial (UTE GRE: 20 μmolPFOB-1min-1/2) or Cartesian k-space filling (GRE: 12 μmolPFOB-1min-1/2; FSE: 16 μmolPFOB-1min-1/2; balanced SSFP: 23 μmolPFOB-1min-1/2). In vivo imaging of angiogenesis-targeted PFOB nanoparticles was demonstrated in a rabbit model of cancer on a clinical 3 Tesla scanner. Conclusion A new dual 19F/1H balanced UTE-SSFP sequence manifests high SNR, with detection sensitivity more than two-fold better than traditional techniques, and alleviates imaging problems caused by dephasing in complex spectra. Magn Reson Med 74:537-543, 2015.
Original language | English |
---|---|
Pages (from-to) | 537-543 |
Number of pages | 7 |
Journal | Magnetic resonance in medicine |
Volume | 74 |
Issue number | 2 |
DOIs | |
State | Published - Aug 1 2015 |
Keywords
- F MRI
- balanced steady state free precession
- molecular imaging
- ultra short echo time