Abstract
Bayesian optimization is a powerful tool for global optimization of expensive functions. One of its key components is the underlying probabilistic model used for the objective function f. In practice, however, it is often unclear how one should appropriately choose a model, especially when gathering data is expensive. We introduce a novel automated Bayesian optimization approach that dynamically selects promising models for explaining the observed data using Bayesian optimization in model space. Crucially, we account for the uncertainty in the choice of model; our method is capable of using multiple models to represent its current belief about f and subsequently using this information for decision making. We argue, and demonstrate empirically, that our approach automatically finds suitable models for the objective function, which ultimately results in more-efficient optimization.
Original language | English |
---|---|
Pages (from-to) | 5984-5994 |
Number of pages | 11 |
Journal | Advances in Neural Information Processing Systems |
Volume | 2018-December |
State | Published - 2018 |
Event | 32nd Conference on Neural Information Processing Systems, NeurIPS 2018 - Montreal, Canada Duration: Dec 2 2018 → Dec 8 2018 |