Automatic wide complex tachycardia differentiation using mathematically synthesized vectorcardiogram signals

Anthony H. Kashou, Sarah LoCoco, Trevon D. McGill, Christopher M. Evenson, Abhishek J. Deshmukh, David O. Hodge, Daniel H. Cooper, Sandeep S. Sodhi, Phillip S. Cuculich, Samuel J. Asirvatham, Peter A. Noseworthy, Christopher V. DeSimone, Adam M. May

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Background: Automated wide complex tachycardia (WCT) differentiation into ventricular tachycardia (VT) and supraventricular wide complex tachycardia (SWCT) may be accomplished using novel calculations that quantify the extent of mean electrical vector changes between the WCT and baseline electrocardiogram (ECG). At present, it is unknown whether quantifying mean electrical vector changes within three orthogonal vectorcardiogram (VCG) leads (X, Y, and Z leads) can improve automated VT and SWCT classification. Methods: A derivation cohort of paired WCT and baseline ECGs was used to derive five logistic regression models: (i) one novel WCT differentiation model (i.e., VCG Model), (ii) three previously developed WCT differentiation models (i.e., WCT Formula, VT Prediction Model, and WCT Formula II), and (iii) one “all-inclusive” model (i.e., Hybrid Model). A separate validation cohort of paired WCT and baseline ECGs was used to trial and compare each model's performance. Results: The VCG Model, composed of WCT QRS duration, baseline QRS duration, absolute change in QRS duration, X-lead QRS amplitude change, Y-lead QRS amplitude change, and Z-lead QRS amplitude change, demonstrated effective WCT differentiation (area under the curve [AUC] 0.94) for the derivation cohort. For the validation cohort, the diagnostic performance of the VCG Model (AUC 0.94) was similar to that achieved by the WCT Formula (AUC 0.95), VT Prediction Model (AUC 0.91), WCT Formula II (AUC 0.94), and Hybrid Model (AUC 0.95). Conclusion: Custom calculations derived from mathematically synthesized VCG signals may be used to formulate an effective means to differentiate WCTs automatically.

Original languageEnglish
Article numbere12890
JournalAnnals of Noninvasive Electrocardiology
Volume27
Issue number1
DOIs
StatePublished - Jan 2022

Fingerprint

Dive into the research topics of 'Automatic wide complex tachycardia differentiation using mathematically synthesized vectorcardiogram signals'. Together they form a unique fingerprint.

Cite this