Automated method for calculation of a load-independent index of isovolumic pressure decay from left ventricular pressure data

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Diastolic heart failure (DHF) is present in over 50% of hospitalized heart failure patients, and diastolic dysfunction is known to play a critical pathophysiologic role. Measurement of left-ventricular pressure (LVP) via catheterization is the gold standard for diastolic function (DF) evaluation, but current methods fail to fully capitalize on the complete information content of the pressure contour. We have previously demonstrated that a kinematic model of isovolumic pressure decay (IVPD), which accounts for restoring force (stiffness) and resistance (viscoelasticity/relaxation), provides mechanistic insight into IVPD physiology and provides an accurate fit to the recorded contour. Recently we derived a novel load-independent index of isovolumic pressure decay (LIIIVPD) involving IVPD kinematic model stiffness and resistance parameters. In this work we detail methods and provide guidelines by which LIIIVPD computation may be achieved in real-time from the pressure contour recorded during cardiac catheterization.

Original languageEnglish
Title of host publicationProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEngineering the Future of Biomedicine, EMBC 2009
PublisherIEEE Computer Society
Pages3031-3034
Number of pages4
ISBN (Print)9781424432967
DOIs
StatePublished - 2009
Event31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009 - Minneapolis, MN, United States
Duration: Sep 2 2009Sep 6 2009

Publication series

NameProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009

Conference

Conference31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009
Country/TerritoryUnited States
CityMinneapolis, MN
Period09/2/0909/6/09

Fingerprint

Dive into the research topics of 'Automated method for calculation of a load-independent index of isovolumic pressure decay from left ventricular pressure data'. Together they form a unique fingerprint.

Cite this