Automated gland and nuclei segmentation for grading of prostate and breast cancer histopathology

Shivang Naik, Scott Doyle, Shannon Agner, Anant Madabhushi, Michael Feldman, John Tomaszewski

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

296 Scopus citations

Abstract

Automated detection and segmentation of nuclear and glandular structures is critical for classification and grading of prostate and breast cancer histopathology. In this paper, we present a methodology for automated detection and segmentation of structures of interest in digitized histopathology images. The scheme integrates image information from across three different scales: (1) lowlevel information based on pixel values, (2) high-level information based on relationships between pixels for object detection, and (3) domain-specific information based on relationships between histological structures. Low-level information is utilized by a Bayesian classifier to generate a likelihood that each pixel belongs to an object of interest. High-level information is extracted in two ways: (i) by a level-set algorithm, where a contour is evolved in the likelihood scenes generated by the Bayesian classifier to identify object boundaries, and (ii) by a template matching algorithm, where shape models are used to identify glands and nuclei from the low-level likelihood scenes. Structural constraints are imposed via domainspecific knowledge in order to verify whether the detected objects do indeed belong to structures of interest. In this paper we demonstrate the utility of our glandular and nuclear segmentation algorithm in accurate extraction of various morphological and nuclear features for automated grading of (a) prostate cancer, (b) breast cancer, and (c) distinguishing between cancerous and benign breast histology specimens. The efficacy of our segmentation algorithm is evaluated by comparing breast and prostate cancer grading and benign vs. cancer discrimination accuracies with corresponding accuracies obtained via manual detection and segmentation of glands and nuclei.

Original languageEnglish
Title of host publication2008 5th IEEE International Symposium on Biomedical Imaging
Subtitle of host publicationFrom Nano to Macro, Proceedings, ISBI
Pages284-287
Number of pages4
DOIs
StatePublished - 2008
Event2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI - Paris, France
Duration: May 14 2008May 17 2008

Publication series

Name2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Proceedings, ISBI

Conference

Conference2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI
Country/TerritoryFrance
CityParis
Period05/14/0805/17/08

Keywords

  • Breast cancer
  • Detection
  • Grading
  • Prostate cancer
  • Segmentation

Fingerprint

Dive into the research topics of 'Automated gland and nuclei segmentation for grading of prostate and breast cancer histopathology'. Together they form a unique fingerprint.

Cite this