Abstract

Background: Wide QRS complex tachycardia (WCT) differentiation into ventricular tachycardia (VT) and supraventricular wide complex tachycardia (SWCT) remains challenging despite numerous 12-lead electrocardiogram (ECG) criteria and algorithms. Automated solutions leveraging computerized ECG interpretation (CEI) measurements and engineered features offer practical ways to improve diagnostic accuracy. We propose automated algorithms based on (i) WCT QRS polarity direction (WCT Polarity Code [WCT-PC]) and (ii) QRS polarity shifts between WCT and baseline ECGs (QRS Polarity Shift [QRS-PS]). Methods: In a three-part study, we derive and validate machine learning (ML) models—logistic regression (LR), artificial neural network (ANN), Random Forests (RF), support vector machine (SVM), and ensemble learning (EL)—using engineered (WCT-PC and QRS-PS) and previously established WCT differentiation features. Part 1 uses WCT ECG measurements alone, Part 2 pairs WCT and baseline ECG features, and Part 3 combines all features used in Parts 1 and 2 Results: Among 235 WCT patients (158 SWCT, 77 VT), 103 had gold standard diagnoses. Part 1 models achieved AUCs of 0.86–0.88 using WCT ECG features alone. Part 2 improved accuracy with paired ECGs (AUCs 0.90–0.93). Part 3 showed variable results (AUC 0.72–0.93), with RF and SVM performing best. Conclusions: Incorporating engineered parameters related to QRS polarity direction and shifts can yield effective WCT differentiation, presenting a promising approach for automated CEI algorithms.

Original languageEnglish
Article number282
JournalCommunications Medicine
Volume4
Issue number1
DOIs
StatePublished - Dec 2024

Fingerprint

Dive into the research topics of 'Automated differentiation of wide QRS complex tachycardia using QRS complex polarity'. Together they form a unique fingerprint.

Cite this