Automated analysis of low-field brain MRI in cerebral malaria

Danni Tu, Manu S. Goyal, Jordan D. Dworkin, Samuel Kampondeni, Lorenna Vidal, Eric Biondo-Savin, Sandeep Juvvadi, Prashant Raghavan, Jennifer Nicholas, Karen Chetcuti, Kelly Clark, Timothy Robert-Fitzgerald, Theodore D. Satterthwaite, Paul Yushkevich, Christos Davatzikos, Guray Erus, Nicholas J. Tustison, Douglas G. Postels, Terrie E. Taylor, Dylan S. SmallRussell T. Shinohara

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

A central challenge of medical imaging studies is to extract biomarkers that characterize disease pathology or outcomes. Modern automated approaches have found tremendous success in high-resolution, high-quality magnetic resonance images. These methods, however, may not translate to low-resolution images acquired on magnetic resonance imaging (MRI) scanners with lower magnetic field strength. In low-resource settings where low-field scanners are more common and there is a shortage of radiologists to manually interpret MRI scans, it is critical to develop automated methods that can augment or replace manual interpretation, while accommodating reduced image quality. We present a fully automated framework for translating radiological diagnostic criteria into image-based biomarkers, inspired by a project in which children with cerebral malaria (CM) were imaged using low-field 0.35 Tesla MRI. We integrate multiatlas label fusion, which leverages high-resolution images from another sample as prior spatial information, with parametric Gaussian hidden Markov models based on image intensities, to create a robust method for determining ventricular cerebrospinal fluid volume. We also propose normalized image intensity and texture measurements to determine the loss of gray-to-white matter tissue differentiation and sulcal effacement. These integrated biomarkers have excellent classification performance for determining severe brain swelling due to CM.

Original languageEnglish
Pages (from-to)2417-2429
Number of pages13
JournalBiometrics
Volume79
Issue number3
DOIs
StatePublished - Sep 2023

Keywords

  • MRI
  • Markov random field
  • brain segmentation
  • data integration

Fingerprint

Dive into the research topics of 'Automated analysis of low-field brain MRI in cerebral malaria'. Together they form a unique fingerprint.

Cite this