Abstract
A high r1 relaxivity manganese-gadolinium nanocolloid (αvβ3-MnOL-Gd NC) was developed and effectively detected atherosclerotic angiogenesis in rabbits fed cholesterol-rich diets for 12months using a clinical MRI scanner (3T). 3D mapping of neovasculature signal intensity revealed the spatial coherence and intensity of plaque angiogenic expansion, which may, with other high risk MR bioindicators, help identify high-risk patients with moderate (40% to 60%) vascular stenosis. Microscopy confirmed the predominant media and plaque distribution of fluorescent αvβ3-MnOL-Gd NC, mirroring the MR data. An expected close spatial association of αvβ3-integrin neovasculature and macrophages was noted, particularly within plaque shoulder regions. Manganese oleate bioelimination occurred via the biliary system into feces. Gd-DOTA was eliminated through the bile-fecal and renal excretion routes. αvβ3-MnOL-Gd NC offers an effective vehicle for T1w neovascular imaging in atherosclerosis.
Original language | English |
---|---|
Pages (from-to) | 569-578 |
Number of pages | 10 |
Journal | Nanomedicine: Nanotechnology, Biology, and Medicine |
Volume | 11 |
Issue number | 3 |
DOIs | |
State | Published - 2015 |
Keywords
- Angiogenesis
- Atherosclerosis
- Contrast media
- MRI
- Molecular imaging
- Nanotechnology